Structures18- More Attentions
Presenter | Papers | Paper URL | Our Slides |
---|---|---|---|
Arshdeep | Show, Attend and Tell: Neural Image Caption Generation with Visual Attention 1 | ||
Arshdeep | Latent Alignment and Variational Attention 2 | ||
Arshdeep | Modularity Matters: Learning Invariant Relational Reasoning Tasks, Jason Jo, Vikas Verma, Yoshua Bengio 3 |
-
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention / Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio/ Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. We validate the use of attention with state-of-the-art performance on three benchmark datasets: Flickr8k, Flickr30k and MS COCO. ↩
-
Latent Alignment and Variational Attention / NIPS2018 / Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, Alexander M. Rush/ Neural attention has become central to many state-of-the-art models in natural language processing and related domains. Attention networks are an easy-to-train and effective method for softly simulating alignment; however, the approach does not marginalize over latent alignments in a probabilistic sense. This property makes it difficult to compare attention to other alignment approaches, to compose it with probabilistic models, and to perform posterior inference conditioned on observed data. A related latent approach, hard attention, fixes these issues, but is generally harder to train and less accurate. This work considers variational attention networks, alternatives to soft and hard attention for learning latent variable alignment models, with tighter approximation bounds based on amortized variational inference. We further propose methods for reducing the variance of gradients to make these approaches computationally feasible. Experiments show that for machine translation and visual question answering, inefficient exact latent variable models outperform standard neural attention, but these gains go away when using hard attention based training. On the other hand, variational attention retains most of the performance gain but with training speed comparable to neural attention. ↩
-
Modularity Matters: Learning Invariant Relational Reasoning Tasks, Jason Jo, Vikas Verma, Yoshua Bengio / ICML18 / We focus on two supervised visual reasoning tasks whose labels encode a semantic relational rule between two or more objects in an image: the MNIST Parity task and the colorized Pentomino task. The objects in the images undergo random translation, scaling, rotation and coloring transformations. Thus these tasks involve invariant relational reasoning. We report uneven performance of various deep CNN models on these two tasks. For the MNIST Parity task, we report that the VGG19 model soundly outperforms a family of ResNet models. Moreover, the family of ResNet models exhibits a general sensitivity to random initialization for the MNIST Parity task. For the colorized Pentomino task, now both the VGG19 and ResNet models exhibit sluggish optimization and very poor test generalization, hovering around 30% test error. The CNN we tested all learn hierarchies of fully distributed features and thus encode the distributed representation prior. We are motivated by a hypothesis from cognitive neuroscience which posits that the human visual cortex is modularized, and this allows the visual cortex to learn higher order invariances. To this end, we consider a modularized variant of the ResNet model, referred to as a Residual Mixture Network (ResMixNet) which employs a mixture-of-experts architecture to interleave distributed representations with more specialized, modular representations. We show that very shallow ResMixNets are capable of learning each of the two tasks well, attaining less than 2% and 1% test error on the MNIST Parity and the colorized Pentomino tasks respectively. Most importantly, the ResMixNet models are extremely parameter efficient: generalizing better than various non-modular CNNs that have over 10x the number of parameters. These experimental results support the hypothesis that modularity is a robust prior for learning invariant relational reasoning. ↩