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Attention and Latent alignment

attention decisions directly as a tool for model interpretability

or as a factor in final predictions

attention plays the role of a latent alignment variable

hard attention: explicit by introducing a latent variable for alignment
and then optimizing a bound on the log marginal likelihood using
policy gradients

VQA and NMT: alignment
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latent alignment approach

appealing for several reasons:

latent variables facilitate reasoning about dependencies in a
probabilistically principled way, e.g. allowing composition with other
models

posterior inference provides a better basis for model analysis and
partial predictions than strictly feed-forward models

directly maximizing marginal likelihood may lead to better results
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This paper

quantify the issues with attention

propose alternatives based on variational inference.

variational attention approach that can effectively fit latent variable
alignments while remaining tractable to train.

two variants: categorical and relaxed
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Background: Latent Alignment

x = {x1, . . . , xi , . . . , xT}
X ∈ D × T

x̃ is query

discrete output variable : y ∈ Y

process is mediated through a latent alignment variable z

which indicates which member (or mixture of members) of x
generates y.

z ∼ D(a(x , x̃ ; θ)) y ∼ f (x , z ; θ)

a produces the parameters for an alignment distribution D
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Background: Latent Alignment

a produces the parameters for an alignment distribution D.

maxθlogp(y = y ŷ |x , x̃) = maxθlogEz [f (x , z ; θ)ŷ ]

Directly maximizing this log marginal likelihood in the presence of the
latent variable z is often difficult due to the expectation
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Background: Latent Alignment

For this to represent an alignment, restrict the variable z to be in the
simplex over source indices {1, . . . ,T}
let D be a categorical where z is a one-hot vector

zi = 1 if xi is selected

Example: f (x ; z) could use z to pick from x and apply a softmax layer
to predict y, i.e. f (x ; z) = softmax(WXz) and W ∈ R |Y |×d

Second : a relaxed alignment where z is a mixture taken from the
interior of the simplex by letting D be a Dirichlet.
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Background: Soft Attention

deterministic

expectation over the alignment variable

an approximation of alignment

soft attention uses a convex combination of the input representations
XE[z] (the context vector) to obtain a distribution over the output
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Hard Attention

approximate inference approach for latent alignment

takes a single hard sample of z (as opposed to a soft mixture) and
then backpropagates through the model.

First apply Jensens inequality to get a lower bound on the log
marginal likelihood (KEY STEP)

then maximize this lower-bound with policy gradients/REINFORCE
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Variational Attention for Latent Alignment Models

Key step in hard attention: could be large, poor performance

variational inference methods directly aim to tighten this gap

ELBO parameterized bound over a family of distributions q(z)inQ

search over variational distributions q to improve the bound. tight
when the variational distribution is equal to the posterior
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optimize the evidence lower bound

tight when q(z) = p(z |x , x̃ , y)

Hard attention is a special case of the ELBO with q(z) = p(z |x ; x̃).

many ways to optimize the evidence lower bound

amortized variational inference
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Amortized Variational Inference

AVI uses an inference network to produce the parameters of the
variational distribution q(z ;λ)

λ = enc(x , x̃ , y ;φ)

objective aims to reduce the gap with the inference network φ while
also training the generative model θ
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Categorical Alignments

generative assumption is that y is generated from a single index of x.

a low-variance estimator of ∇θELBO, is easily obtained through a
single sample from q(z).

For ∇φELBO, the gradient with respect to the KL portion is easily
computable,

but optimization issue with the gradient with respect to the first term
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Categorical Alignment

Variance reduction of this estimate falls to the baseline term B.

The ideal baseline would be Ez∼q(z)[logf (x ; z)], analogous to the
value function in reinforcement learning.

While this term cannot be easily computed, there is a natural, cheap
approximation: soft attention (i.e. logf (x ;E [z ])).
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Relaxed Alignment

both D and Q as Dirichlets

z represents a mixture of indices.

closer to the soft attention formulation which assigns mass to
multiple indices

fundamentally different in that we still formally treat alignment as a
latent variable.

certain continuous distributions allow the use reparameterization

sampling z ∼ q(z) can be done by first sampling from a simple
unparameterized distribution U,

and then applying a transformation gφ()̇, yielding an unbiased
estimator
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Neural machine Translation

Attention is used to identify which source positions should be used to
predict the target.

For variational attention, the inference network enc applies a
bidirectional LSTM over the source and the target to obtain the
hidden states x1, . . . , xTandh1, . . . , hS ,

produces the alignment scores at the j-th time step via a bilinear map,
s(j)i = exp(hTj Uxi )

For the categorical case, the scores are normalized,
q(z(j)i = 1) ∝ s(j)i

in the relaxed case the parameters of the Dirichlet are α(j)i = s(j)i
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Visual Question Answering

The query x̃ is obtained by running an LSTM over the question

the attention function a passes the query and the object
representation through an MLP.

The prediction function f: concatenate the chosen xi with the query x̃
to use as input to an MLP which produces a distribution over the
output.

The inference network enc uses the answer embedding hy and
combines it with xi and x̃ to produce the variational (categorical)
distribution
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Results
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Results
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