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Background:	Classifiers	are	Easily	Fooled
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C	Szegedy et	al.,	Intriguing Properties of Deep Neural Networks. In ICLR	2014.



Solution	Strategy
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Solution Strategy 1: Train a perfect vision model.
Infeasible	yet.

Solution Strategy 2: Make it harder to find adversarial examples.
Arms race!

Feature Squeezing: A general framework that reduces the search
space available for an adversary and detects adversarial examples.



Roadmap

• Feature	Squeezing	Detection	Framework

• Feature	Squeezers
• Bit	Depth	Reduction
• Spatial	Smoothing

• Detection	Evaluation
• Oblivious	adversary
• Adaptive	adversary
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Detection Framework
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Feature	Squeezer coalesces similar samples intoa single one.
• Barely	change	legitimate	input.
• Destruct adversarial perturbations.



Detection Framework:	Multiple	Squeezers
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• Bit Depth Reduction
• Spatial Smoothing



Bit	Depth	Reduction
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Bit	Depth	Reduction

Eliminating	adversarial	perturbations	while	preserving	semantics.
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Accuracy	with	Bit	Depth	Reduction
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Dataset Squeezer Adversarial	Examples
(FGSM,	BIM,	CW∞,	Deep	Fool,	CW2,	CW0,	JSMA)

Legitimate
Images

MNIST
None 13.0% 99.43%

1-bit Depth 62.7% 99.33%

ImageNet
None 2.78% 69.70%

4-bit Depth 52.11% 68.00%

Baseline



Spatial	Smoothing:	Median	Filter

• Replace	a	pixel	with	median	of	its	neighbors.
• Effective	in	eliminating	”salt-and-pepper”	noise.

10*	Image	from	https://sultanofswing90.wordpress.com/tag/image-processing/

3x3	Median	Filter



Spatial	Smoothing:	Non-local	Means

• Replace	a	patch	with	weighted	mean	of	similar	patches.
• Preserve	more	edges.
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Accuracy	with	Spatial	Smoothing
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Dataset Squeezer Adversarial	Examples
(FGSM,	BIM,	CW∞,	Deep	Fool,	CW2,	CW0)

Legitimate
Images

ImageNet

None 2.78% 69.70%

Median Filter
2*2 68.11% 65.40%

Non-localMeans
11-3-4 57.11% 65.40%

Baseline



Other	Potential	Squeezers
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C	Xie,	et	al.	Mitigating	Adversarial	Effects	Through	Randomization,	to	appear	in	ICLR	2018.

J	Buckman,	et	al.	Thermometer	Encoding:	One	Hot	Way	To	Resist	Adversarial	Examples	,	
to	appear	in	ICLR	2018.

D	Meng and	H	Chen,	MagNet:	a	Two-Pronged	Defense	against	Adversarial	Examples,	in	CCS	2017.

F	Liao,	et	al.	Defense	against	Adversarial	Attacks	Using	High-Level	Representation	Guided	Denoiser,	
arXiv 1712.02976.

A	Prakash,	et	al.	Deflecting	Adversarial	Attacks	with	Pixel	Deflection,	arXiv 1801.08926.

• Thermometer Encoding(learnable bit depth reduction)

• Image	denoising using	bilateral	filter,	autoencoder,	wavelet,	etc.

• Image	resizing



Experimental	Setup

• Datasets	and	Models
MNIST,	 7-layer-CNN
CIFAR-10,	 DenseNet
ImageNet,	 MobileNet

• Attacks	(100	examples	for	each	attack)
• Untargeted:	FGSM,	BIM,	DeepFool
• Targeted	(Next/Least-Likely): JSMA, Carlini-Wagner	L2/L∞/L0

• Detection	Datasets
• A	balanced	dataset	with	legitimate	examples.
• 50%	for	training	the	detector,	the	remaining	for	validation.
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Threat Models

• Oblivious adversary: The	adversary	has	full	knowledge	of	the	
target	model,	but	is	not	aware	of	the	detector.

• Adaptive adversary: The	adversary	has	full	knowledge	of	the	
target	model and the	detector.
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Train	a	detector (MNIST)

Maximum L1 Distance 17

Select	a	threshold	value	with	FPR	5%.	
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Detect Successful Adv. Examples (MNIST)
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Squeezer
L∞	Attacks L2 Attacks L0 Attacks

FGSM BIM CW∞ CW2 CW0 JSMA

1-bit Depth 100% 97.9% 100% 100% 55.6% 100%

Median 2*2 73.1% 27.7% 100% 94.4% 82.2% 100%

[Best Single] 100% 97.9% 100% 100% 82.2% 100%

Joint 100% 97.9% 100% 100% 91.1% 100%

Bit Depth Reduction is more effective on L∞ and L2 attacks.

Median Smoothing is more effective on L0 attacks.

Joint detection improves performance.



Aggregated	Detection	Results

Dataset Squeezers Threshold
False	

Positive	
Rate

Detection
Rate
(SAEs)

ROC-AUC
Exclude
FAEs

MNIST Bit	Depth	(1-bit),	
Median	(2x2) 0.0029 3.98% 98.2% 99.44%

CIFAR-10
Bit	Depth	(5-bit),	
Median	(2x2),	
Non-local	Mean	(13-3-2)

1.1402 4.93% 84.5% 95.74%

ImageNet
Bit	Depth	(5-bit),	
Median	(2x2),	
Non-local	Mean	(11-3-4)

1.2128 8.33% 85.9% 94.24%
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Threat Models

• Oblivious attack: The	adversary	has	full	knowledge	of	the	
target	model,	but	is	not	aware	of	the	detector.

• Adaptive attack: The	adversary	has	full	knowledge	of	the	
target	model and the	detector.
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Adaptive	Adversary

Adaptive	CW2 attack,	unbounded	adversary.

Warren	He,	James	Wei,	Xinyun Chen,	Nicholas	Carlini,	Dawn	Song,
Adversarial	Example	Defense:	Ensembles	of	Weak	Defenses	are	not	Strong,	USENIX	WOOT’17.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	 𝑔 𝑥; − 𝑡 + 	𝜆 ∗ Δ 𝑥, 𝑥; +	𝑘 ∗ 𝐿#𝑠𝑐𝑜𝑟𝑒(𝑥′)
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Adaptive	Adversarial	Examples
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No successful adversarial examples were found for images originally labeled as 3 or 8.

Mean L2
2.80

4.14

4.67



Adaptive	Adversary	Success	Rates
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Counter	Measure:	Randomization

• Binary	filter	threshold	:=	0.5																			threshold	:=	𝒩 0.5,0.0625

• Strengthen	the	adaptive	adversary		
Attack an ensemble of 3	detectors with thresholds	:=	[0.4,	0.5,	0.6]
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2.80, Untargeted

4.14, Targeted-Next

4.67, Targeted-LL

3.63, Untargeted

5.48, Targeted-Next

5.76, Targeted-LL

Attack	Deterministic	Detector Mean L2

Attack	Randomized	Detector



Conclusion

• Feature	Squeezing	hardens deep learning models.
• Feature Squeezing gives advantages to the defense side in	the arms	
race with adaptive adversary.
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Thank	you!
Reproduce	our	results	using	EvadeML-Zoo:	https://evadeML.org/zoo
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Backup	Slides
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NIPS’17	AML	Defense	Challenge

• Different	threat	model:	Unknown	target	model	and	defense.
• Top	4	defense	submissions:

Username Basic	Idea Score
1 liaofz Denoise autoencoder trained	with	adv.	examples	

+	model	ensemble
95.32

2 cihangxie Random	resizing +	random	padding. 92.35
3 anlthms JPEG	compression +	random	affine	transformation	

+	model	ensemble.
91.48

4 erkowa 2x2	Median	filter	+	model	ensemble. 91.20
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None	of	them	is	robust	against	adaptive	adversary.


