Feature Squeezing:
Detecting Adversarial Examples in Deep Neural Networks

Weilin Xu David Evans Yanjun Qi
Background: Classifiers are Easily Fooled

Solution Strategy

Solution Strategy 1: Train a perfect vision model.
Infeasible yet.

Solution Strategy 2: Make it harder to find adversarial examples.
Arms race!

Feature Squeezing: A general framework that reduces the search space available for an adversary and detects adversarial examples.
Roadmap

• Feature Squeezing Detection Framework

• Feature Squeezers
 • Bit Depth Reduction
 • Spatial Smoothing

• Detection Evaluation
 • Oblivious adversary
 • Adaptive adversary
Detection Framework

Feature **Squeezer** coalesces similar samples into a single one.

- Barely change legitimate input.
- Destruct adversarial perturbations.
Detection Framework: Multiple Squeezers

- **Input**
 - Model
 - Squeezer
 - Model
 - Squeezer

- **Prediction**
 - Prediction_0
 - Prediction_1
 - Prediction_2

- **Decision**
 - $\max(d_1, d_2) > T$
 - **Adversarial**
 - Yes
 - No
 - **Legitimate**

- **Options**
 - Bit Depth Reduction
 - Spatial Smoothing
Bit Depth Reduction

Signal Quantization

1-bit
3-bit
8-bit

Reduce to 1-bit
\[f_i = \text{round}(f_i \times 2)/2 \]

Original value

Target value

\[\begin{bmatrix} 0.012 & 0.571 & \ldots & 0.159 & 0.951 \end{bmatrix} \]

\[\begin{bmatrix} 0.312 & 0.271 & \ldots & 0.159 & 0.351 \end{bmatrix} \]
Bit Depth Reduction

Eliminating adversarial perturbations while preserving semantics.

Legitimate FGSM BIM CW_∞ CW_2

Binary Filter

1 1 4 2 2

1 1 1 1 1
Accuracy with Bit Depth Reduction

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Squeezer</th>
<th>Adversarial Examples (FGSM, BIM, CW_{∞}, Deep Fool, CW_2, CW_0, JSMA)</th>
<th>Legitimate Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>None</td>
<td>13.0%</td>
<td>99.43%</td>
</tr>
<tr>
<td></td>
<td>1-bit Depth</td>
<td>62.7%</td>
<td>99.33%</td>
</tr>
<tr>
<td>ImageNet</td>
<td>None</td>
<td>2.78%</td>
<td>69.70%</td>
</tr>
<tr>
<td></td>
<td>4-bit Depth</td>
<td>52.11%</td>
<td>68.00%</td>
</tr>
</tbody>
</table>
Spatial Smoothing: Median Filter

• Replace a pixel with median of its neighbors.
• Effective in eliminating “salt-and-pepper” noise.

3x3 Median Filter

* Image from https://sultanofswing90.wordpress.com/tag/image-processing/
Spatial Smoothing: Non-local Means

- Replace a patch with weighted mean of similar patches.
- Preserve more edges.

\[p' = \sum w(p, q_i) \times q_i \]
Median Filter (2*2) → Non-local Means (13-3-4)
Accuracy with Spatial Smoothing

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Squeezer</th>
<th>Adversarial Examples (FGSM, BIM, CW_\infty, Deep Fool, CW_2, CW_0)</th>
<th>Legitimate Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageNet</td>
<td>None</td>
<td>2.78%</td>
<td>69.70%</td>
</tr>
<tr>
<td></td>
<td>Median Filter 2*2</td>
<td>68.11%</td>
<td>65.40%</td>
</tr>
<tr>
<td></td>
<td>Non-local Means 11-3-4</td>
<td>57.11%</td>
<td>65.40%</td>
</tr>
</tbody>
</table>
Other Potential Squeezers

• Thermometer Encoding (learnable bit depth reduction)

• Image denoising using bilateral filter, autoencoder, wavelet, etc.

• Image resizing
Experimental Setup

• Datasets and Models
 MNIST, 7-layer-CNN
 CIFAR-10, DenseNet
 ImageNet, MobileNet

• Attacks (100 examples for each attack)
 • Untargeted: FGSM, BIM, DeepFool
 • Targeted (Next/Least-Likely): JSMA, Carlini-Wagner $L_2/L_\infty/L_0$

• Detection Datasets
 • A balanced dataset with legitimate examples.
 • 50% for training the detector, the remaining for validation.
Threat Models

• **Oblivious adversary**: The adversary has full knowledge of the target model, but is not aware of the detector.

• **Adaptive adversary**: The adversary has full knowledge of the target model and the detector.
Train a detector (MNIST)

Select a threshold value with FPR 5%.

Number of Examples

0 200 400 600 800

Legitimate

0.0 0.4 0.8 1.2 1.6 2.0

Maximum L_1 Distance

Adversarial
Detect Successful Adv. Examples (MNIST)

Bit Depth Reduction is more effective on L_∞ and L_2 attacks.

Median Smoothing is more effective on L_0 attacks.

<table>
<thead>
<tr>
<th>Squeezing Method</th>
<th>L_∞ Attacks</th>
<th>L_2 Attacks</th>
<th>L_0 Attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FGSM</td>
<td>BIM</td>
<td>CW$_\infty$</td>
</tr>
<tr>
<td>1-bit Depth</td>
<td>100%</td>
<td>97.9%</td>
<td>100%</td>
</tr>
<tr>
<td>Median 2*2</td>
<td>73.1%</td>
<td>27.7%</td>
<td>100%</td>
</tr>
<tr>
<td>[Best Single]</td>
<td>100%</td>
<td>97.9%</td>
<td>100%</td>
</tr>
<tr>
<td>Joint</td>
<td>100%</td>
<td>97.9%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Joint detection improves performance.
Aggregated Detection Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Squeezers</th>
<th>Threshold</th>
<th>False Positive Rate</th>
<th>Detection Rate (SAEs)</th>
<th>ROC-AUC Exclude FAEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>Bit Depth (1-bit), Median (2x2)</td>
<td>0.0029</td>
<td>3.98%</td>
<td>98.2%</td>
<td>99.44%</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>Bit Depth (5-bit), Median (2x2), Non-local Mean (13-3-2)</td>
<td>1.1402</td>
<td>4.93%</td>
<td>84.5%</td>
<td>95.74%</td>
</tr>
<tr>
<td>ImageNet</td>
<td>Bit Depth (5-bit), Median (2x2), Non-local Mean (11-3-4)</td>
<td>1.2128</td>
<td>8.33%</td>
<td>85.9%</td>
<td>94.24%</td>
</tr>
</tbody>
</table>
Threat Models

• **Oblivious attack**: The adversary has full knowledge of the target model, but is not aware of the detector.

• **Adaptive attack**: The adversary has full knowledge of the target model and the detector.
Adaptive Adversary

Adaptive CW$_2$ attack, unbounded adversary.

\[
\text{minimize } \|g(x') - t\| + \lambda \Delta(x, x') + k \cdot L_1 \text{score}(x')
\]

Misclassification term Distance term Detection term

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, Dawn Song, Adversarial Example Defense: Ensembles of Weak Defenses are not Strong, USENIX WOOT’17.
Adaptive Adversarial Examples

No successful adversarial examples were found for images originally labeled as 3 or 8.

Mean L_2

- Untargeted: 2.80
- Targeted (Next): 4.14
- Targeted (LL): 4.67
Adaptive Adversary Success Rates

Adversary’s Success Rate vs. Clipped ϵ

- Common ϵ
- Targeted (Next)
- Targeted (LL)
- Unbounded

Success Rates:
- 0.01, 0.06, 0.01, 0.44, 0.68, 0.24

Targeted (LL) and Targeted (Next) are closer to the y-axis, indicating lower success rates compared to Common ϵ and Unbounded.
Counter Measure: Randomization

• Binary filter threshold := 0.5

\[\text{threshold} := \mathcal{N}(0.5, 0.0625) \]

• Strengthen the adaptive adversary
 Attack an ensemble of 3 detectors with thresholds := [0.4, 0.5, 0.6]
Attack Deterministic Detector

<table>
<thead>
<tr>
<th>Mean L_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.80, Untargeted</td>
</tr>
<tr>
<td>4.14, Targeted-Next</td>
</tr>
<tr>
<td>4.67, Targeted-LL</td>
</tr>
</tbody>
</table>

Attack Randomized Detector

<table>
<thead>
<tr>
<th>Mean L_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.63, Untargeted</td>
</tr>
<tr>
<td>5.48, Targeted-Next</td>
</tr>
<tr>
<td>5.76, Targeted-LL</td>
</tr>
</tbody>
</table>
Conclusion

• Feature Squeezing hardens deep learning models.
• Feature Squeezing gives advantages to the defense side in the arms race with adaptive adversary.
Thank you!

Reproduce our results using EvadeML-Zoo: https://evadeML.org/zoo
Backup Slides
NIPS’17 AML Defense Challenge

• Different threat model: Unknown target model and defense.
• Top 4 defense submissions:

<table>
<thead>
<tr>
<th>Username</th>
<th>Basic Idea</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 liaofz</td>
<td>Denoise autoencoder trained with adv. examples + model ensemble</td>
<td>95.32</td>
</tr>
<tr>
<td>2 cihangxie</td>
<td>Random resizing + random padding.</td>
<td>92.35</td>
</tr>
<tr>
<td>3 anlthms</td>
<td>JPEG compression + random affine transformation + model ensemble.</td>
<td>91.48</td>
</tr>
<tr>
<td>4 erkowa</td>
<td>2x2 Median filter + model ensemble.</td>
<td>91.20</td>
</tr>
</tbody>
</table>

None of them is robust against adaptive adversary.