Feature Squeezing:

Detecting Adversarial Examples in Deep Neural Networks

Weilin Xu David Evans Yanjun Qi

Background: Classifiers are Easily Fooled

C Szegedy et al., Intriguing Properties of Deep Neural Networks. In ICLR 2014.

Solution Strategy

Solution Strategy 1: Train a perfect vision model. Infeasible yet.

Solution Strategy 2: Make it harder to find adversarial examples. Arms race!

Feature Squeezing: A general framework that reduces the search space available for an adversary and detects adversarial examples.

Roadmap

- Feature Squeezing Detection Framework
- Feature Squeezers
 - Bit Depth Reduction
 - Spatial Smoothing
- Detection Evaluation
 - Oblivious adversary
 - Adaptive adversary

Detection Framework

Detection Framework: Multiple Squeezers

Bit Depth Reduction

Bit Depth Reduction

Eliminating adversarial perturbations while preserving semantics.

 CW_2 Legitimate FGSM BIM CW_{∞} 2 2 4 Binary Filter

Accuracy with Bit Depth Reduction

Spatial Smoothing: Median Filter

- Replace a pixel with median of its neighbors.
- Effective in eliminating "salt-and-pepper" noise.

* Image from https://sultanofswing90.wordpress.com/tag/image-processing/

Spatial Smoothing: Non-local Means

- Replace a patch with weighted mean of similar patches.
- Preserve more edges.

$$p' = \sum w(p, q_i) \times q_i$$

Original BIM (L_{∞}) JSMA (L_0)

Accuracy with Spatial Smoothing

Other Potential Squeezers

- Thermometer Encoding (learnable bit depth reduction)
 J Buckman, et al. Thermometer Encoding: One Hot Way To Resist Adversarial Examples, to appear in ICLR 2018.
- Image denoising using bilateral filter, autoencoder, wavelet, etc.
 D Meng and H Chen, MagNet: a Two-Pronged Defense against Adversarial Examples, in CCS 2017.
 F Liao, et al. Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser, arXiv 1712.02976.

A Prakash, et al. Deflecting Adversarial Attacks with Pixel Deflection, arXiv 1801.08926.

• Image resizing

C Xie, et al. Mitigating Adversarial Effects Through Randomization, to appear in ICLR 2018.

Experimental Setup

- Datasets and Models
 - MNIST, 7-layer-CNN
 - CIFAR-10, DenseNet

ImageNet, MobileNet

- Attacks (100 examples for each attack)
 - Untargeted: FGSM, BIM, DeepFool
 - Targeted (Next/Least-Likely): JSMA, Carlini-Wagner $L_2/L_{\infty}/L_0$
- Detection Datasets
 - A balanced dataset with legitimate examples.
 - 50% for training the detector, the remaining for validation.

Threat Models

• **Oblivious adversary**: The adversary has full knowledge of the target model, but is not aware of the detector.

• Adaptive adversary: The adversary has full knowledge of the target model and the detector.

Train a detector (MNIST)

Detect Successful Adv. Examples (MNIST)

Bit Depth Reduction is more effective on L_{∞} and L_2 attacks.

	Median Smoothing is more effective on L ₀ attacks.						
S euroscer	L _∞ Attacks			L ₂ Attacks	L ₀ Attacks		
Squeezer	FGSM	BIM	CW_{∞}	CW ₂	CW ₀	JSMA	
1-bit Depth	100%	97.9%	100%	100%	55.6%	100%	
Median 2*2	73.1%	27.7%	100%	94.4%	82.2%	100%	
[Best Single]	100%	97.9%	100%	100%	82.2%	100%	
Joint	100%	97.9%	100%	100%	91.1%	100%	
						_	

Joint detection improves performance.

Aggregated Detection Results

Dataset	Squeezers	Threshold	False Positive Rate	Detection Rate (SAEs)	ROC-AUC Exclude FAEs	
MNIST	Bit Depth (1-bit) <i>,</i> Median (2x2)	0.0029	3.98%	98.2%	99.44%	Best Result
CIFAR-10	Bit Depth (5-bit), Median (2x2), Non-local Mean (13-3-2)	1.1402	4.93%	84.5%	95.74%	
ImageNet	Bit Depth (5-bit), Median (2x2), Non-local Mean (11-3-4)	1.2128	8.33%	85.9%	94.24%	

Threat Models

• **Oblivious attack**: The adversary has full knowledge of the target model, but is not aware of the detector.

• Adaptive attack: The adversary has full knowledge of the target model and the detector.

Adaptive Adversary

Adaptive CW₂ attack, unbounded adversary.

minimize
$$||g(x') - t|| + \lambda * \Delta(x, x') + k * L_1 score(x')$$

Misclassification term Distance term

Detection term

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, Dawn Song, Adversarial Example Defense: Ensembles of Weak Defenses are not Strong, USENIX WOOT'17.

Adaptive Adversarial Examples

No successful adversarial examples were found for images originally labeled as 3 or 8.

Counter Measure: Randomization

• Strengthen the adaptive adversary

Attack an ensemble of 3 detectors with thresholds := [0.4, 0.5, 0.6]

Attack Deterministic Detector

$Mean \ L_2$

2.80, Untargeted

4.14, Targeted-Next

4.67, Targeted-LL

Attack Randomized Detector

3.63, Untargeted

5.48, Targeted-Next

5.76, Targeted-LL

Conclusion

- Feature Squeezing hardens deep learning models.
- Feature Squeezing gives advantages to the defense side in the arms race with adaptive adversary.

Thank you!

Reproduce our results using EvadeML-Zoo: <u>https://evadeML.org/zoo</u>

Backup Slides

NIPS'17 AML Defense Challenge

- Different threat model: Unknown target model and defense.
- Top 4 defense submissions:

	Username	Basic Idea	
1	liaofz	Denoise autoencoder trained with adv. examples + model ensemble	
2	cihangxie	Random resizing + random padding.	92.35
3	anlthms	JPEG compression + random affine transformation + model ensemble.	91.48
4	erkowa	2x2 Median filter + model ensemble.	91.20

None of them is robust against adaptive adversary.