Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers

Ji Gao¹, Jack Lanchantin¹, Mary Lou Soffa¹, Yanjun Qi¹

¹University of Virginia http://trustworthymachinelearning.org/

@ 1st Deep Learning and Security Workshop ; 2018

1/43

▲□▶ ▲□▶ ▲目 パロパーロー シベ

2/29

Outline

Motivation

- White box vs. black box
- Ø Method
 - Word scorer
 - Word transformer
- Series Experiment
- Onclusions

Method

Example of black-box classification systems

Google Perspective API

Method

Example of black-box classification systems

Google Perspective API

Target scenario

Previous Research

Image

Our target

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness...

Text

<ロ > < 部 > < 書 > < 書 > う 名 で 4/29

An example of DeepWordBug

Goal: Flip the prediction of a sentiment analyzer

An example of DeepWordBug

Goal: Flip the prediction of a sentiment analyzer

An example of DeepWordBug

Goal: Flip the prediction of a sentiment analyzer

Algorithm Our Methods

<ロ> < 回> < 国> < 国> < 国> < 国> < 国> < () つへで 6/29

7/29

Challenges of language tasks Our Method

Adversarial examples

Suppose a deep learning classifier $F(\cdot) : \mathbb{X} \to \mathbb{Y}$ original sample is x, an adversarial example x' in *Untargeted attack* follows:

$$\begin{aligned} \mathbf{x}' &= \mathbf{x} + \Delta \mathbf{x}, ||\Delta \mathbf{x}||_{p} < \epsilon, \mathbf{x}' \in \mathbb{X} \\ F(\mathbf{x}) &\neq F(\mathbf{x}') \end{aligned}$$

When X is symbolic:

- How to perturb x?
- No metric for measuring Δx

<ロ> < 回> < 回> < E> < E> E のへで 8/29

Our setting Our Method

 $\Delta \mathbf{x} = \text{Edit distance}(\mathbf{x}, \mathbf{x}')$

DeepWordBug Our Methods

• 1. Scoring - Find important words to change

4

 2. Transformation - Generate some modification on words of top importance.

$$\Delta \mathbf{x} = \text{Edit distance}(\mathbf{x}, \mathbf{x}')$$
$$= \sum_{i \in \text{Selected words}} \text{Edit distance}(x_i, x'_i)$$

Step 1: Scoring function Our Methods

- Goal: Select important words
- The proposed scoring functions have the following properties:
 - Correctly reflect the importance of words
 - 2 Black-box
 - Ifficient to calculate.

10/29

Temporal Head Score

<ロ> < 団 > < 臣 > < 臣 > 王 の < で 11/29

This

Temporal score:

this	0.448-0.5=-0.052

Temporal Head Score

Temporal head score:

this	0.974-0.969=0.005
is	0.586-0.448=0.138

11/29

Temporal Head Score

Temporal head score:

this	0.974-0.969=0.005		
is	0.586-0.448=0.138		
definitely	0.998-0.586=0.412		

<ロ> (日) (日) (王) (王) 王) のへで 12/29

Temporal Tail score

Combined score

<ロ> (日) (日) (王) (王) 王) のへで 14/29

Step 2: Ranking and transformation

- Calculate the scoring function for all words in the input once.
- Rank all the words according to the scores.

<ロ> (日) (日) (王) (王) 王) のへで 15/29

Step 3: Word Transformer Our Methods

Original		Substitution	Swapping	Deletion	Insertion
Team	\rightarrow	Texm	Taem	Tem	Te <mark>z</mark> am
Artist	\rightarrow	Ar <mark>x</mark> ist	Art <mark>si</mark> t	Artst	Arti <mark>c</mark> st
Computer	\rightarrow	Comput <mark>n</mark> r	Comp <mark>tu</mark> er	Compter	Comnputer

- Aim I: Machine-learning based classifier views generated words as **"unknown"**.
- Aim II: Control the edit distance of the modification

16/29

Summary Our Methods

	#Training	#Testing	#Classes	Task
AG's News	120.000	7.600	4	News
	120,000	7,000	-	Categorization
Amazon Review	3,000,000	650,000	5	Sentiment
Full	3,000,000	030,000	5	Analysis
Amazon Review	3,600,000	400,000	2	Sentiment
Polarity	3,000,000	400,000	2	Analysis
DBPedia	BPedia 560,000 70,000 14		Ontology	
DBreula	500,000	70,000	14	Classification
Yahoo! Answers 1,400,000 60,000 10		10	Topic	
ranoo! Answers	1,400,000	00,000	10	Classification
Yelp Review Full	650,000	50.000	5	Sentiment
Telp Review Full	050,000	50,000	5	Analysis
Yelp Review Polarity	560,000	38,000	2	Sentiment
Telp iteview Foldrity	Review Folarity 500,000 58,000 2		<u> </u>	Analysis
Enron Spam Email	26,972	6,744	2	Spam E-mail
	20,972 0,744 2		2	Detection

Methods in comparison

- Random(Baseline): Random selection of words. Similar to (Papernot et al. 2013)
- Gradient(Baseline): White-box method. Judging the importance of the word using the magnitude of the gradient (Samanta, S., & Mehta, S. (2017).).
- **DeepWordBug(Our method)**: Use 3 Different scoring functions: *Temporal Head*, *Temporal Tail* and *Combined*.

Main result: Effectiveness of adversarial samples (average)

4 ロ × 4 団 × 4 国 × 4 国 × 19/29

20/29

Question: Are the generated adversarial samples transferable to other models?

 Adversarial samples generated on one model can be successfully transferred between models, reducing the model accuracy from around 90% to 20-50%

					100
LSTM1	11.90	26.38	24.10	44.49	80
From 12 BiLSTM1	28.43	24.77	27.38	39.44	60
Fro LSTM2	22.40	26.11	20.20	34.74	40
BiLSTM2	42.26	39.58	32.36	30.80	20
	LOTMA	DUCTMA		DILOTMO	0

Question: How does different transformer functions work?

• Varying transformation function have small effect on the attack performance.

Question: How strong are the adversarial samples generated?

 The adversarial samples generated successfully make the machine learning model to believe a wrong answer with 0.9 probability

Defense: by Adversarial training

- ReTrain the model with adversarial samples.
- Accuracy on raw inputs slightly decreases;
- Accuracy on the adversarial samples rapidly increases from around 12% (before the training) to 62% (after the training)

Defense: by an autocorrector?

	Original	Attack	Defend with Autocorrector
Swap	88.45%	14.77%	77.34%
Substitute	88.45%	12.28%	74.85%
Remove	88.45%	14.06%	62.43%
Insert	88.45%	12.28%	82.07%
Substitute-2	88.45%	11.90%	54.54%
Remove-2	88.45%	14.25%	33.67%

 While spellchecker reduces the effectiveness of the adversarial samples, stronger attacks such as removing 2 characters in every selected word still can successfully reduce the model accuracy to 34%

Related Works

Related works:

- Papernot et. al 2016 Iteratively:
 - Pick words randomly
 - Apply gradient based algorithm directly on the word embedding
 - Project to the nearest word
- Samanta & Sameep 2017 Iteratively:
 - Pick important words using gradient
 - · Generate linguistic based modification on the words

Summary: White-box and costly

- Black-box: DeepWordBug generates adversarial samples in a pure black-box manner.
- Performance: Reduce the performance of state-of-the-art deep learning models by up to 80%
- Transferability: The adversarial samples generated on one model can be successfully transferred to other models, reducing the target model accuracy from around 90% to 20-50%.

- Goodfellow, Ian, J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).
- Papernot, Nicolas, et al. "Crafting adversarial input sequences for recurrent neural networks." Military Communications Conference, MILCOM 2016-2016 IEEE. IEEE, 2016.
- Samanta, Suranjana, and Sameep Mehta. "Towards Crafting Text Adversarial Samples." arXiv preprint arXiv:1707.02812 (2017).
- Zhang, Xiang, Junbo Zhao, and Yann LeCun. "Character-level convolutional networks for text classification." Advances in neural information processing systems. 2015.
- Rayner, Keith, Sarah J. White, and S. P. Liversedge. "Raeding wrods with jubmled lettres: There is a cost." (2006).

Why Word Transformer is Effective?

- Do not guarantee the original word will be changed to "unknown", but failure chance is very slight
- Suppose the longest word in the dictionary is length *I*, there are 27^{*I*} possible letter sequences ≤ *I*
- Let I = 8, and |D| = 20000. The chance that changed word is not "unknown" is roughly $\frac{27^8}{20000} \approx 0.00000007$

Why current scoring functions?

- For a single step, Replace-1 score gives the best approximation.
- However, globally it's not optimal.
- Example:

	W1	W2	W3	W4	W5	W6
Value(V)	0.1	-0.1	0.5		-0.1	0.3
Replace-1	0.1	-0.1	0.5	0.5	-0.1	0.3
Temporal Tail	0.1	-0.1	0.5	0	-0.1	0.3

Prediction = [V(W1) + V(W2) + V(W3&W4) + V(W5) + V(W6)] > 0.5

• Here, Temporal tail gives better result than Replace-1.