Feature Squeezing:

Detecting Adversarial Examples in Deep Neural Networks

Weilin Xu

David Evans

Yanjun Qi

http://www.cs.virginia.edu/yanjun/

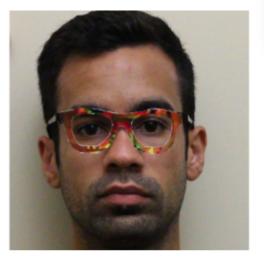
Deep Learning is Solving Many of Our Problems!

Auto-Driving Car

Voice Assistant

Spam Detector

Classifiers Under Attack: Adversary Adapts



Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition

Mahmood Sharif Carnegie Mellon University Pittsburgh, PA, USA mahmoods@cmu.edu Sruti Bhagavatula Carnegie Mellon University Pittsburgh, PA, USA srutib@cmu.edu

Michael K. Reiter University of North Carolina Chapel Hill, NC, USA reiter@cs.unc.edu Lujo Bauer Carnegie Mellon University Pittsburgh, PA, USA Ibauer@cmu.edu

ACM CCS 2016

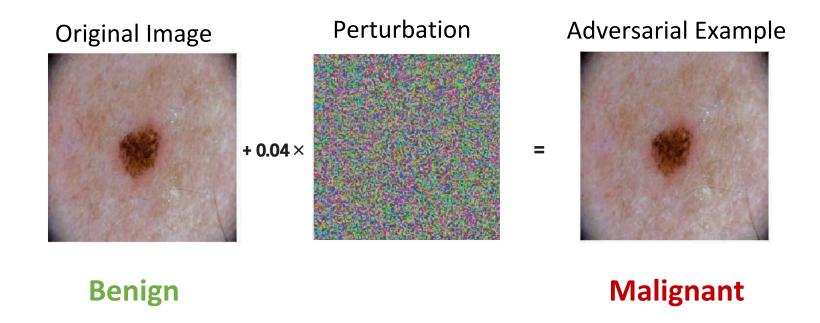
Actual images

Recognized faces

However, Deep Learning Classifiers are Easily Fooled

Melanoma Diagnosis with Computer Vision

Healthcare



Samuel G Finlayson et al. "Adversarial attacks on medical machine learning", Science, 2019.

Solution Strategy

Solution Strategy 1: Train a perfect vision model.

Infeasible yet.

Solution Strategy 2: Make it harder to find adversarial examples.

Arms race!

Feature Squeezing: A general framework that reduces the search space available for an adversary and detects adversarial examples.

Simple, Cheap, Effective!

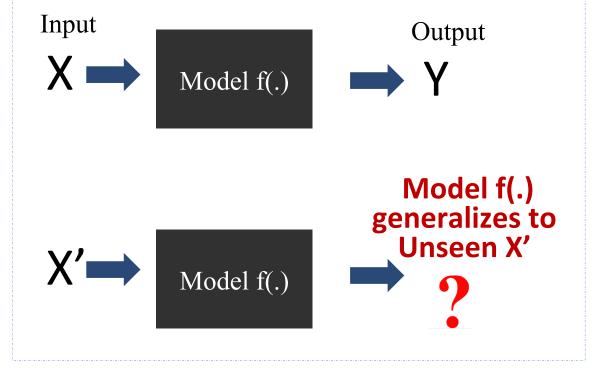
Roadmap

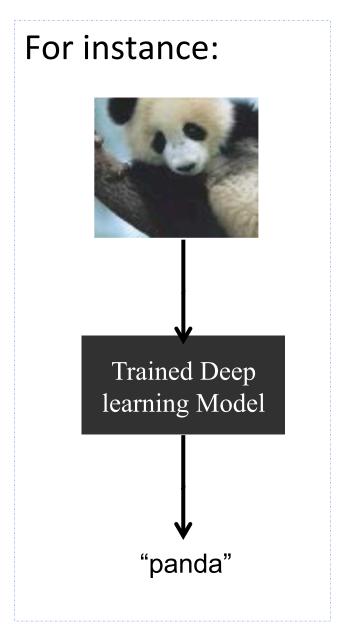
Feature Squeezing Detection Framework

- Feature Squeezers
 - Bit Depth Reduction
 - Spatial Smoothing
- Detection Evaluation
 - Oblivious adversary
 - Adaptive adversary
 - Provable Robustness

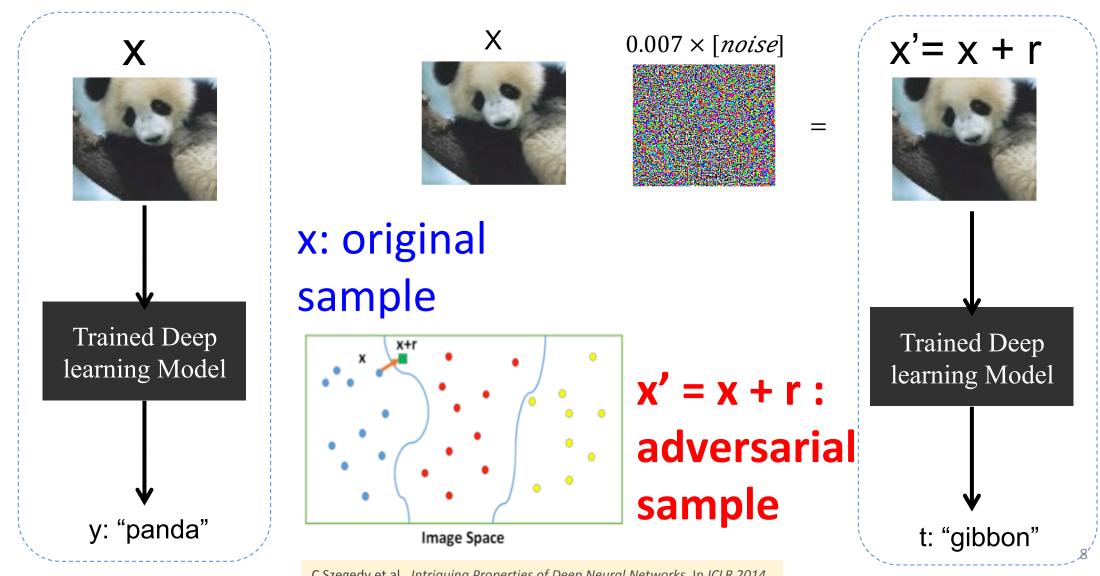
Background: Machine Learning

 Machine Learning: learn to find models that can generalize from observed data to unseen data



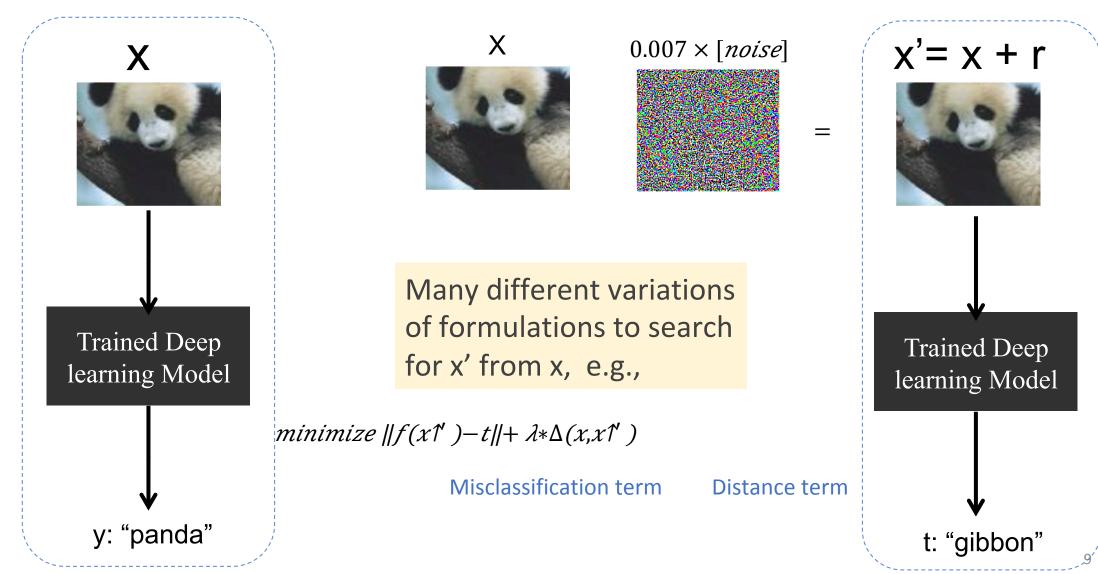


Background: Adversarial Examples

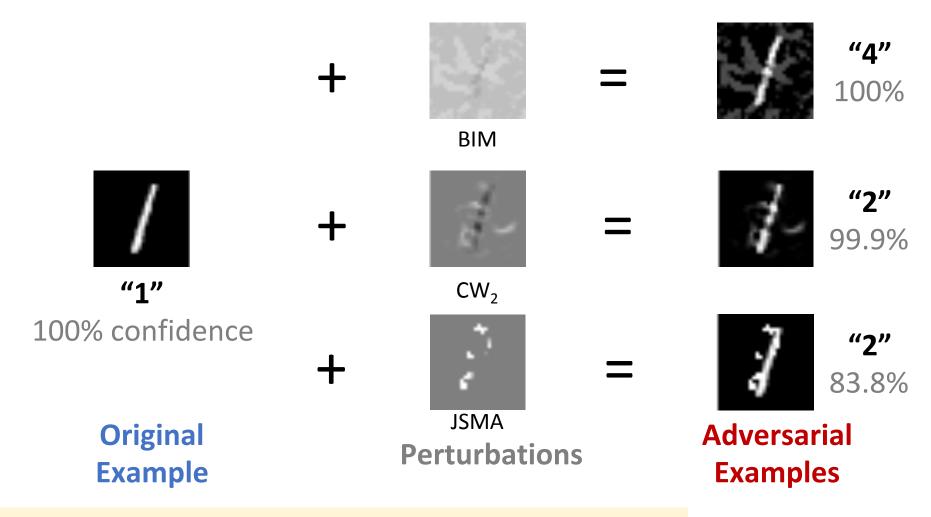


C Szegedy et al., Intriguing Properties of Deep Neural Networks. In ICLR 2014.

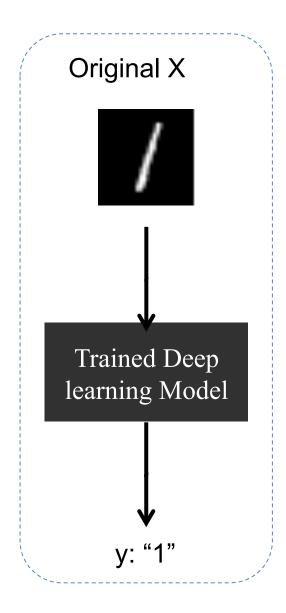
Background: Adversarial Examples



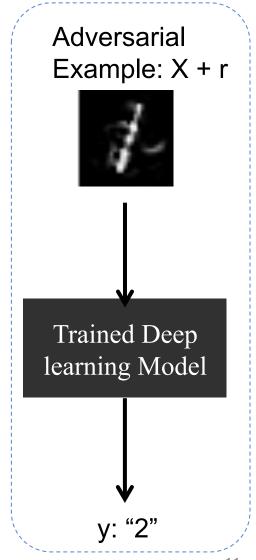
Background: Different variations of Adversarial Examples



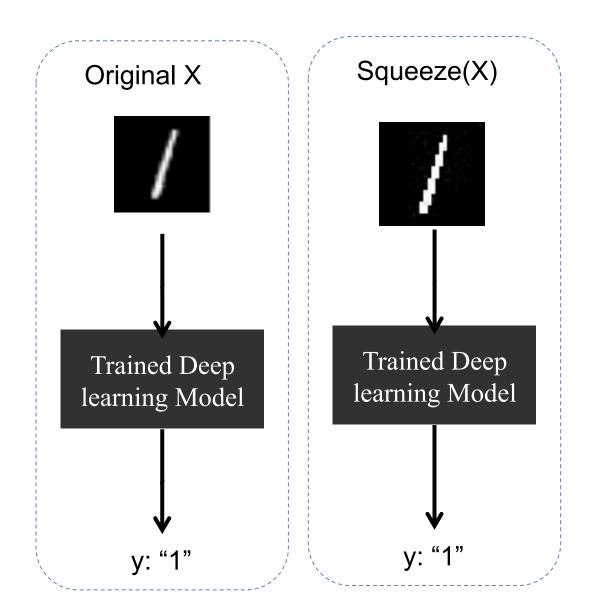
Intriguing Property of Adversarial Examples

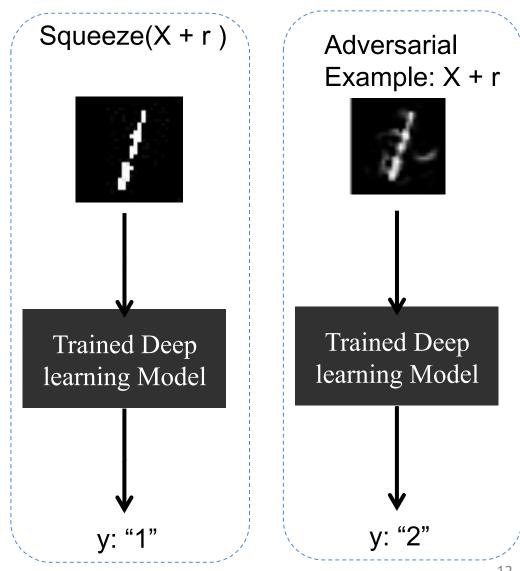


Irrelevant features used in classification tasks are the major cause of adversarial examples.



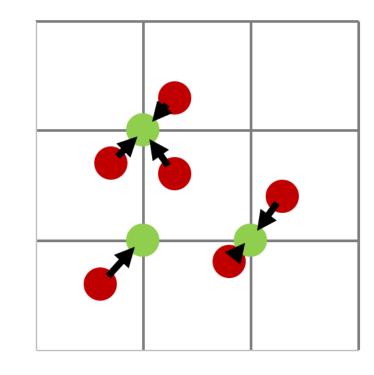
Intriguing Property of Adversarial Examples

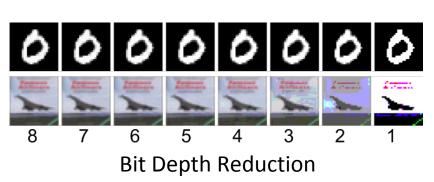


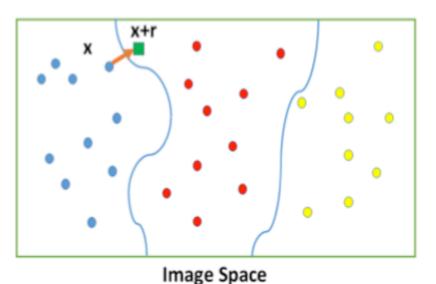


Motivation

- Irrelevant features used in classification tasks are the root cause of adversarial examples.
- The feature spaces are unnecessarily too large in deep learning tasks: e.g. raw image pixels.
- We may reduce the search space of possible perturbations available to an adversary using Feature Squeezing.



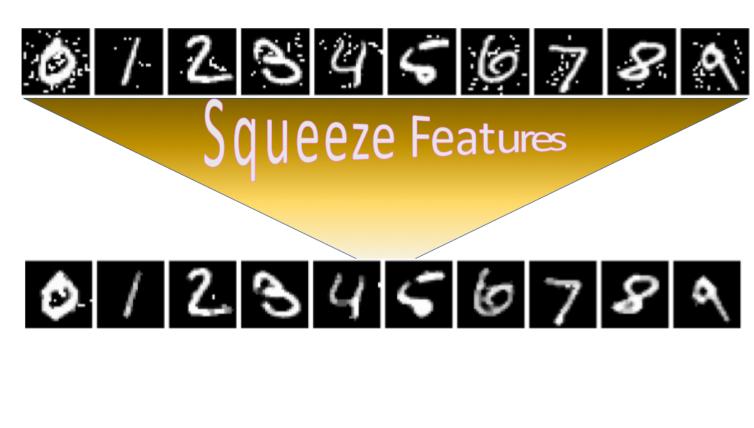


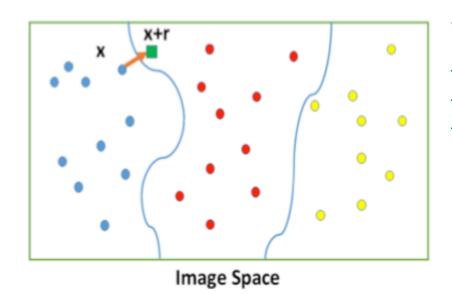


Weilin Xu, David Evans, Yanjun Qi.

<u>Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks</u>.

<u>2018 Network and Distributed System Security Symposium.</u> NDSS2018

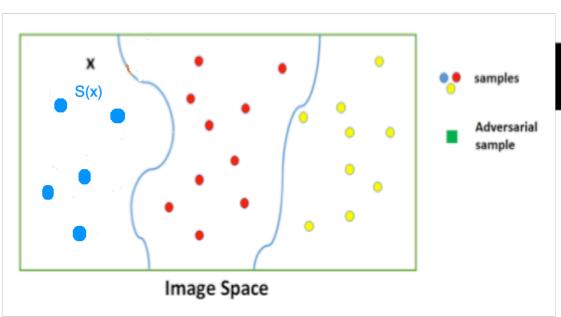




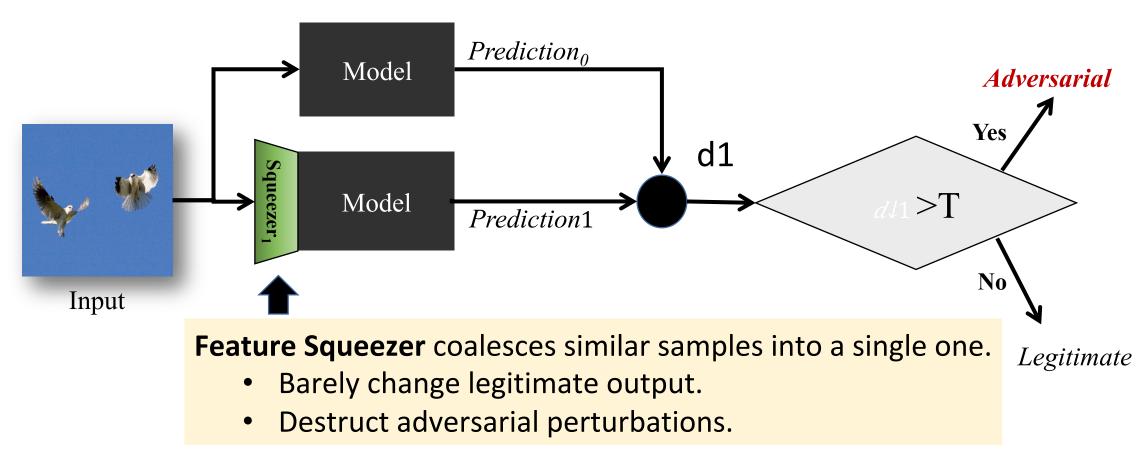
Weilin Xu, David Evans, Yanjun Qi.

<u>Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks</u>.

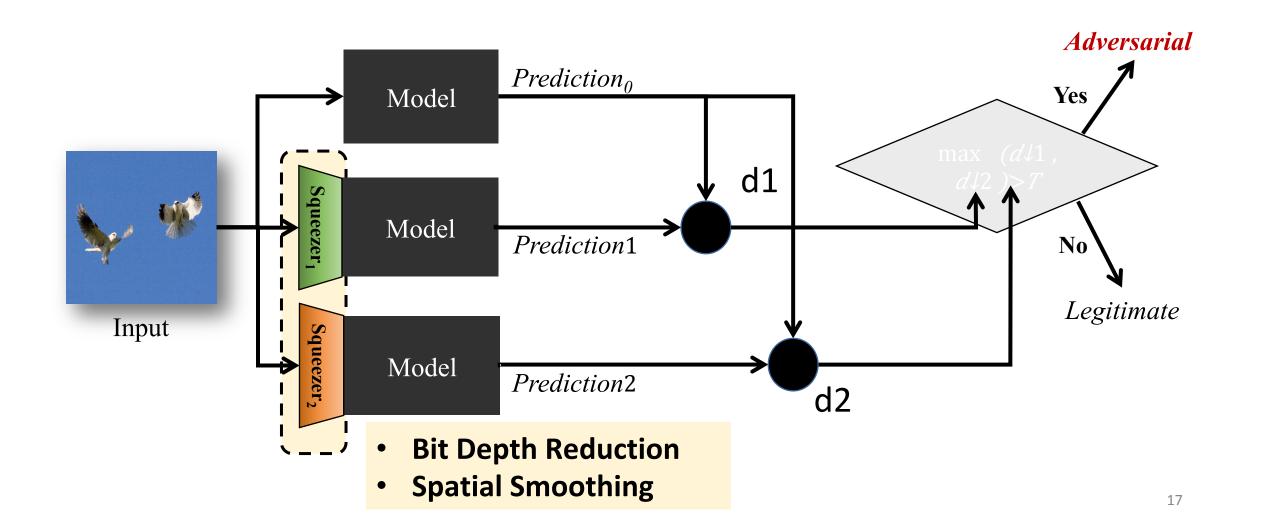
<u>2018 Network and Distributed System Security Symposium.</u> NDSS2018



Detection Framework



Detection Framework: Multiple Squeezers

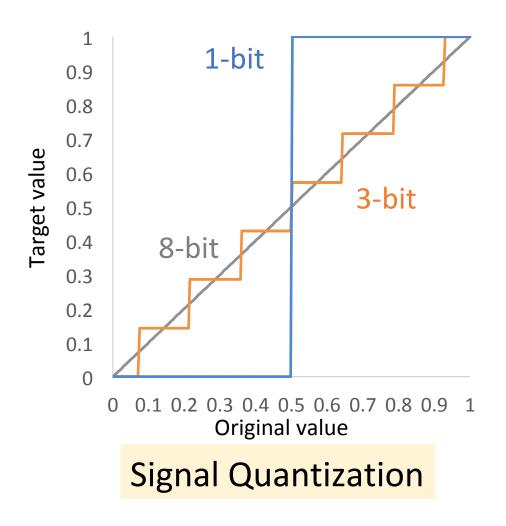


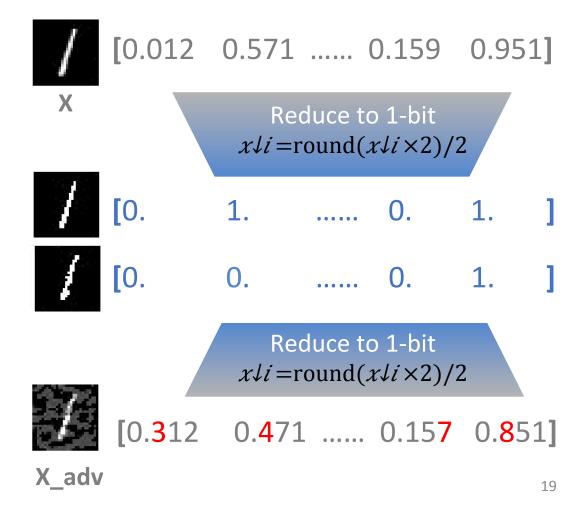
Roadmap

Feature Squeezing Detection Framework

- Feature Squeezers
 - Bit Depth Reduction
 - Spatial Smoothing
- Detection Evaluation
 - Oblivious adversary
 - Adaptive adversary
 - Provable Robustness

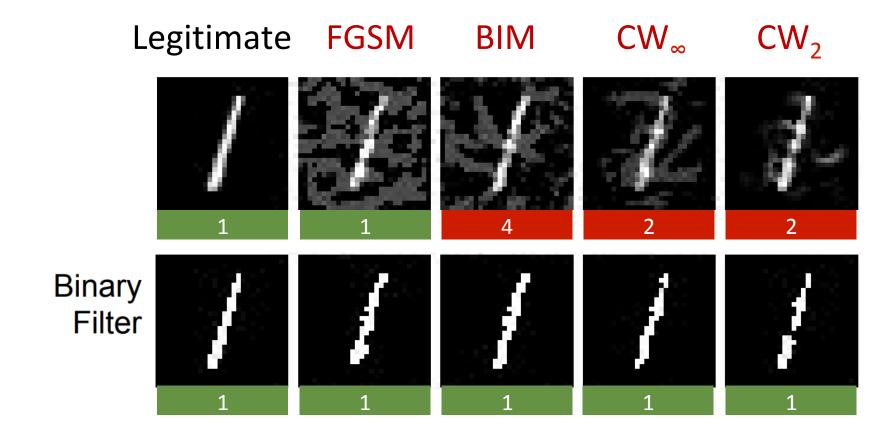
Bit Depth Reduction





Bit Depth Reduction

Eliminating adversarial perturbations while preserving semantics.



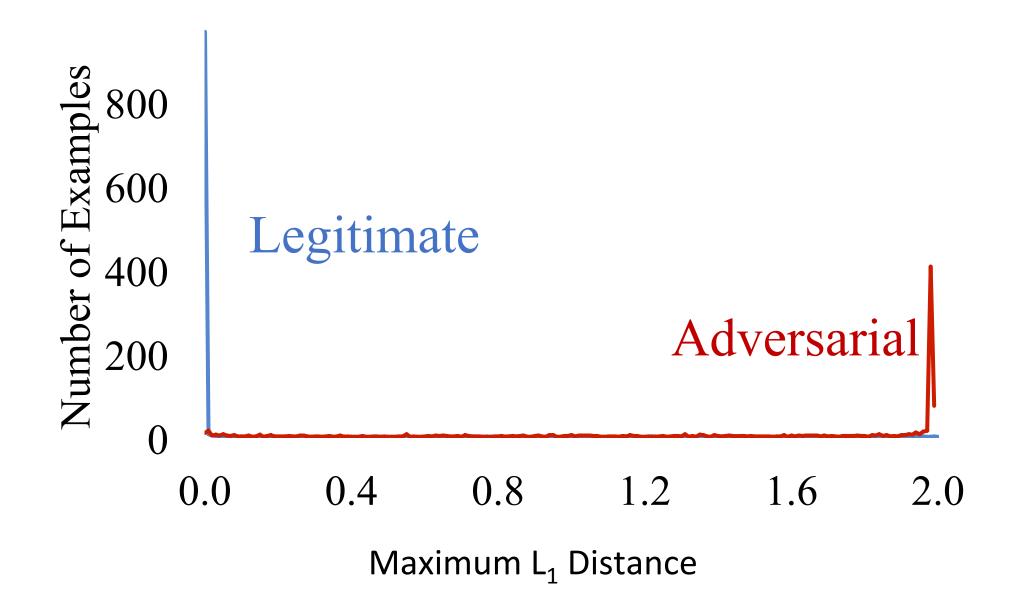
Bit Depth Reduction

Bits per Channel

Accuracy with Bit Depth Reduction

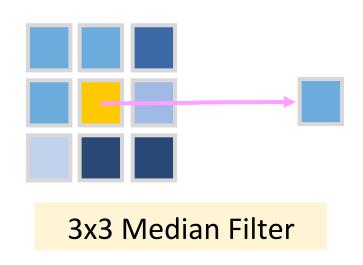
Dataset	Squeezer	Adversarial Examples (FGSM, BIM, CW _∞ , Deep Fool, CW ₂ , CW ₀ , JSMA)	Legitimate Images	
NANUCT	None	13.0%	99.43%	Baseline
MNIST	1-bit Depth	62.7%	99.33%	
luo o a o Ni o t	None	2.78%	69.70%	
ImageNet	4-bit Depth	52.11%	68.00%	

Distribution of Distance (Prediction, Squeezed Prediction) (MNIST)



Spatial Smoothing: Median Filter

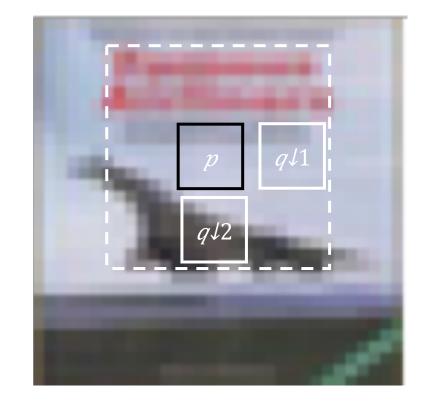
- Replace a pixel with median of its neighbors.
- Effective in eliminating "salt-and-pepper" noise.



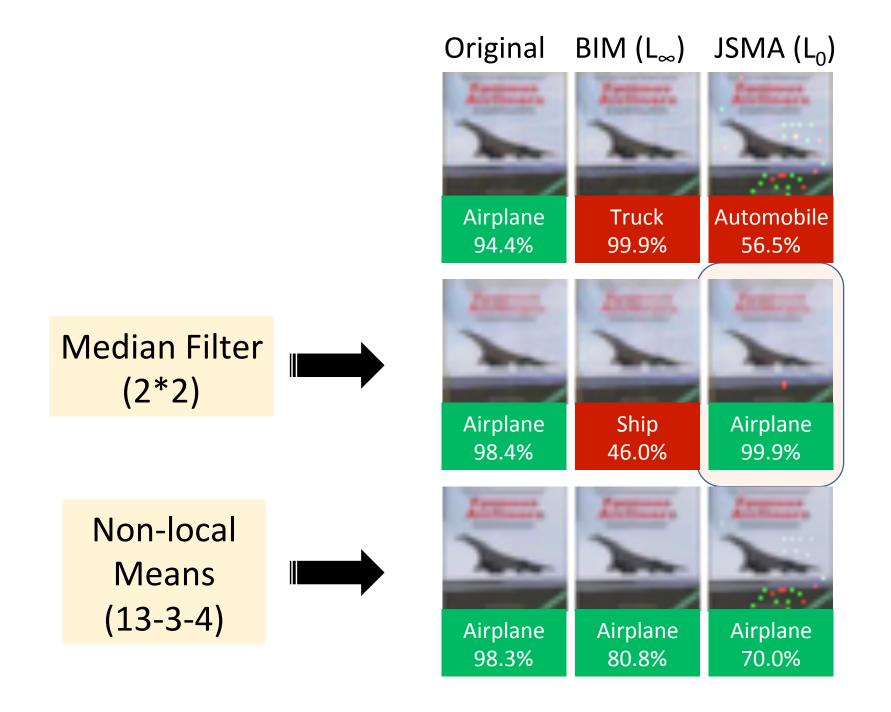
^{*} Image from https://sultanofswing90.wordpress.com/tag/image-processing/

Spatial Smoothing: Non-local Means

- Replace a patch with weighted mean of similar patches.
- Preserve more edges.



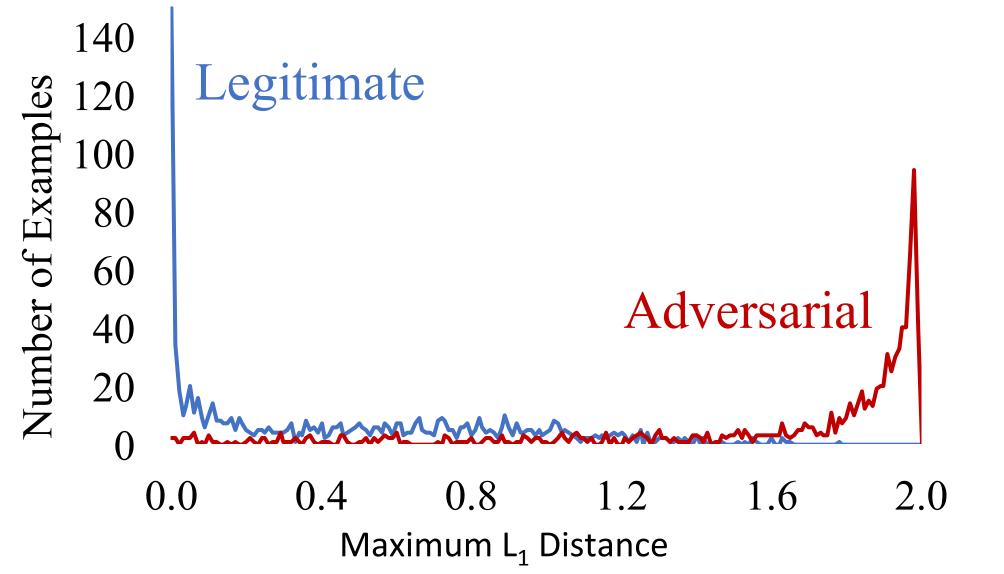
$$p\uparrow' = \sum \uparrow w(p,q\downarrow i) \times q\downarrow i$$



Accuracy with Spatial Smoothing

	Dataset	Squeezer	Adversarial Examples (FGSM, BIM, CW _∞ , Deep Fool, CW ₂ , CW ₀)	Legitimate Images		
		None	2.78%	69.70%	4	Baseline
lm	ImageNet	Median Filter 2*2	68.11%	65.40%		
		Non-local Means 11-3-4	57.11%	65.40%		

Distribution of Distance (Prediction, Squeezed Prediction) (ImageNet)



Other Potential Squeezers

Thermometer Encoding (learnable bit depth reduction)

J Buckman, et al. *Thermometer Encoding: One Hot Way To Resist Adversarial Examples*, ICLR 2018.

Image denoising using bilateral filter, autoencoder, wavelet, etc.

D Meng and H Chen, MagNet: a Two-Pronged Defense against Adversarial Examples, in CCS 2017.

F Liao, et al. Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser, arXiv 1712.02976.

A Prakash, et al. Deflecting Adversarial Attacks with Pixel Deflection, arXiv 1801.08926.

Image resizing

C Xie, et al. Mitigating Adversarial Effects Through Randomization, ICLR 2018.

Roadmap

Feature Squeezing Detection Framework

- Feature Squeezers
 - Bit Depth Reduction
 - Spatial Smoothing
- Detection Evaluation
 - Oblivious adversary
 - Adaptive adversary
 - Provable Robustness

Empirical Evaluation: Threat Models

• Oblivious adversary: The adversary has full knowledge of the target model, but is not aware of the detector.

• Adaptive adversary: The adversary has full knowledge of the target model and the detector.

Experimental Setup

Datasets and Models

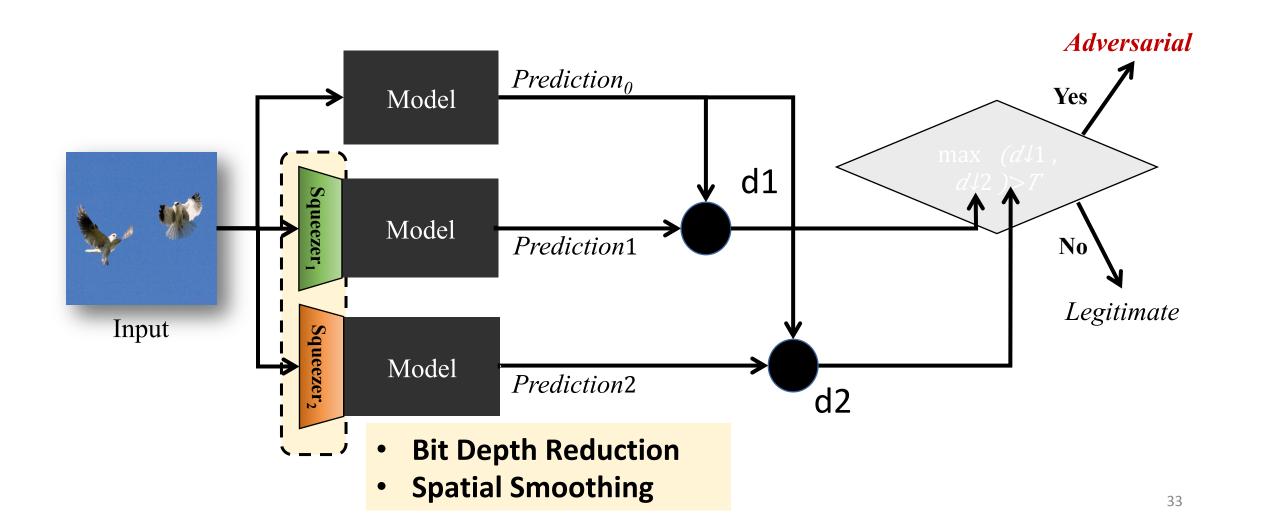
MNIST, 7-layer-CNN

CIFAR-10, DenseNet

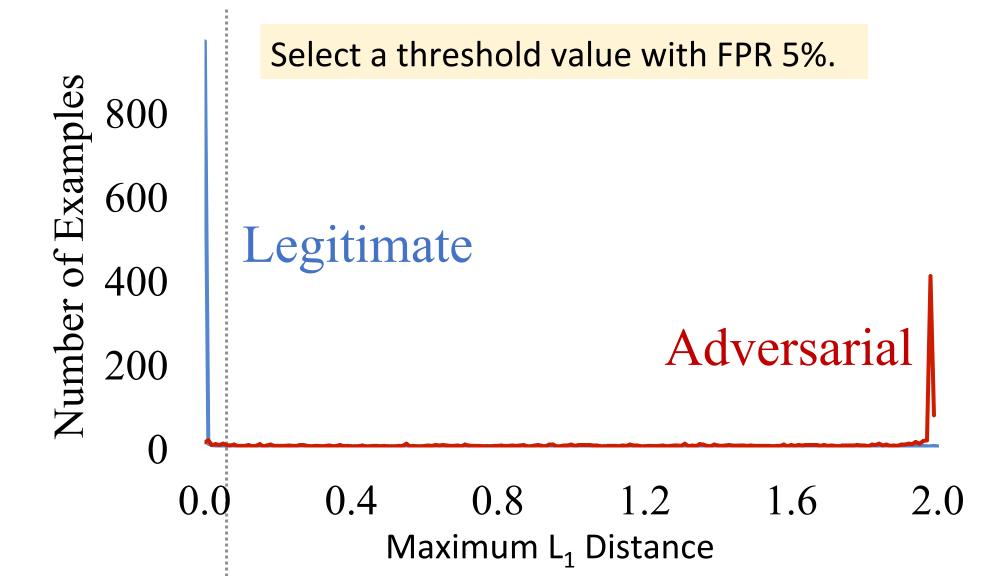
ImageNet, MobileNet

- Attacks (100 examples for each attack)
 - Untargeted: FGSM, BIM, DeepFool
 - Targeted (Next/Least-Likely): JSMA, Carlini-Wagner L₂/L∞/L₀
- Detection Datasets
 - A balanced dataset with legitimate examples.
 - 50% for training the detector, the remaining for validation.

Detection Framework: Multiple Squeezers



How to find T for detector (MNIST)



Detect Successful Adv. Examples (MNIST)

Bit Depth Reduction is more effective on L_{∞} and L_2 attacks.

		Median	Smoothing	is more	effective	on L	attacks.
--	--	--------	-----------	---------	-----------	------	----------

Sanoazar	L _∞ Attacks			L ₂ Attacks	L ₀ Attacks	
Squeezer	FGSM	BIM	CW_{∞}	CW ₂	CW_0	JSMA
1-bit Depth	100%	97.9%	100%	100%	55.6%	100%
Median 2*2	73.1%	27.7%	100%	94.4%	82.2%	100%
[Best Single]	100%	97.9%	100%	100%	82.2%	100%
Joint	100%	97.9%	100%	100%	91.1%	100%

Joint detection improves performance.

Aggregated Detection Results

Dataset	Squeezers	Threshold	False Positive Rate	Detection Rate (SAEs)	ROC-AUC Exclude FAEs
MNIST	Bit Depth (1-bit), Median (2x2)	0.0029	3.98%	98.2%	99.44%
CIFAR-10	Bit Depth (5-bit), Median (2x2), Non-local Mean (13-3-2)	1.1402	4.93%	84.5%	95.74%
ImageNet	Bit Depth (5-bit), Median (2x2), Non-local Mean (11-3-4)	1.2128	8.33%	85.9%	94.24%

Empirical Evaluation: Threat Models

• Oblivious attack: The adversary has full knowledge of the target model, but is not aware of the detector.

• Adaptive attack: The adversary has full knowledge of the target model and the detector.

Adaptive Adversary

Adaptive CW₂ attack, unbounded adversary.

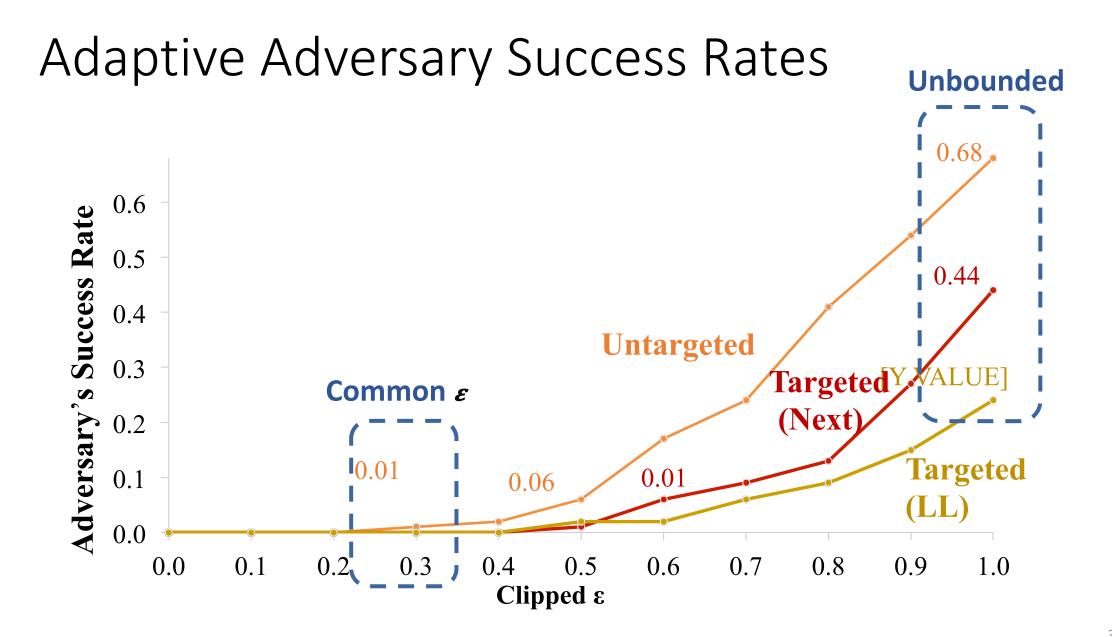
$$minimize ||f(x\uparrow') - t|| + \lambda * \Delta(x,x\uparrow') + k* detectScore(x')$$

Misclassification term

Distance term

Detection term

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, Dawn Song, Adversarial Example Defense: Ensembles of Weak Defenses are not Strong, USENIX WOOT'17.



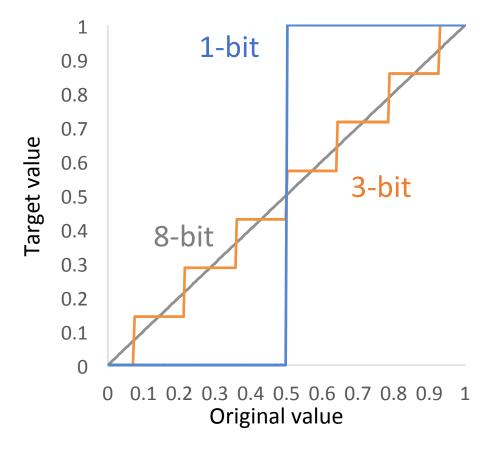
Roadmap

Feature Squeezing Detection Framework

- Feature Squeezers
 - Bit Depth Reduction
 - Spatial Smoothing
- Detection Evaluation
 - Oblivious adversary
 - Adaptive adversary
 - Provable Robustness

Simple feature squeezing improves robustness empirically.

Can we prove it?



Recent Work:

Feature Squeezing Improves Provable Robustness

Given model f(x) which correctly classifies $x \in X$ as y,

$$\forall x \uparrow f \in \mathcal{X}, \Delta(x, x \uparrow f) \leq \epsilon \Rightarrow f(x \uparrow f) = y$$

f is ϵ -robust on input $x \in X$ wrt a distance metric Δ .

Conclusion

• Feature Squeezing hardens deep learning models.

• Feature Squeezing gives advantages to the defense side in the arms race with adaptive adversary.

 Feature Squeezing improves provable robustness of deep learning models

Thank you!

Reproduce our results using EvadeML-Zoo: https://evadeML.org/zoo