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0 Tasks in Joint Structure Learning from Heterogeneous Samples
e http://jointnets.org
@ How to Measure Being Accurate and/or Scalable?
@ Correlation or Conditional Dependency?
@ From Heterogeneous Samples plus Knowledge beyond Samples
© Joint Sparse GGMs: Methods and Variations
Basics: Sparse Gaussian Graphical Model (sGGM)
Method: Joint Graphical Lasso (JGL)
Method: SIMULE: Shared and Individual Parts of MULtiple sGGM Explicitly
Method Variation: NSIMULE: Gaussian to nonparanormal
Method Variation: WSIMULE: Adding Extra knowledge
Large Scale Variation of WSIMULE: JEEK
Large Scale Variation of Differential sGGM: DIFFEE
© Backup Slides
@ Summary of Other Research: http://deepchrome.org
@ Summary of Other Research: http://trustworthymachinelearning.org
@ More about Convercence Rates:
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0 Tasks in Joint Structure Learning from Heterogeneous Samples
e http://jointnets.org
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This Year's Tutorial Talk: jointnets tools for Identifying Related

Dependency Graphs from Heterogeneous Samples

1. Graphical Models to
reflect interactions among
important variables
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Summary: jointnets tools for Identifying Related Dependency Graphs from

Heterogeneous Samples

1. Graphical Models to 2. Consider Sample
reflect interactions among Heterogeneity to reflect
important variables network under many contexts
om0 S N
Protein Protein B - -
Gene Gene Rl
. et — —
Protein DNA/RNA /Q A (/(_\\ )\
Neuron Region Neuron Region - L. —
[ointnets.org

5/120



Summary: jointnets tools for Identifying Related Dependency Graphs from

Heterogeneous Samples

1. Graphical Models to
reflect interactions among
important variables

2. Consider Sample
Heterogeneity to reflect
network under many contexts

* Joint graph discovery

from heterogeneous
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* Fast and scalable
graph estimators
* Parallelizable
method (GPU,
multi-threading)
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Design Motivations: Our Research Philosophy in jointnets

Machine learning for Biomedicine
Our Research Philosophy:

Able to provide and
model biologica
explanations

Well-engineered
software systems

Be Trustworthy
Be Explainable

Be Accurate Be Scalable
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Time line of tools in jointnets.org
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0 Tasks in Joint Structure Learning from Heterogeneous Samples

@ How to Measure Being Accurate and/or Scalable?
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How to compare different estimators?

@ Two major properties: [Accuracy| and [Speed|

10/120



How to compare different estimators?

@ Two major properties: [Accuracy| and [Speed|
@ Accuracy:

o Statistical Convergence rate / error bounds: corresponding to estimation error or
approximation error / distance between your estimated parameter and the true parameter .
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How to compare different estimators?

@ Two major properties: [Accuracy| and [Speed|
@ Accuracy:
o Statistical Convergence rate / error bounds: corresponding to estimation error or
approximation error / distance between your estimated parameter and the true parameter .
@ Speed:

e Computational complexity: How fast and efficient your algorithm is with respect to certain
parameters, e.g., n and p.

o Optimization convergence rate : How fast each optimization step moves the estimated
parameter, such as linear or quadratic.
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Overview Figure of the three major theoretical rates:

Optimization
Convergence Rate
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Overview Figure of the three rates: Computational Complexity
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Computational Complexity: algorithmic cost

@ The amount of required resources: e.g. running time, memory cost .
@ Big O notation: asymptotically tight bound on the running cost.
@ For machine learning tasks, mainly relate to n and p
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Computational Complexity

@ Some well-known cases:
o Matrix Multiplication: e.g., w'X costs O(np?)
e Matrix inversion O(p%)
e SVD O(p?)
o soft-thresholding of matrix O(p?)
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Computational Complexity

@ Some well-known cases:
o Matrix Multiplication: e.g., w'X costs O(np?)
e Matrix inversion O(p%)
e SVD O(p?)
o soft-thresholding of matrix O(p?)
@ How to calculate if estimating parameter 6 via iterative optimization?
o Number of lteration (depending on optimization convergence rate) x Computational
complexity of each lteration.
o e.g., O(Tp?) if every iteration uses SVD.
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Some Notations

X The sample matrix

> The covariance matrix.

Q The precision matrix.

p The number of features (input variables).
n The number of samples in the data matrix.

s The number of non-zero entries in the precision matrix.
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0 Tasks in Joint Structure Learning from Heterogeneous Samples

@ Correlation or Conditional Dependency?
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Background: Graph about p Variable

@ Many applications need to know interactions among
entities:
e Brain functional connectivity
e Gene Interactions, Transcription Factor co-bindings,
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Background: Graph about p Variable

@ Many applications need to know interactions among
entities:
e Brain functional connectivity
e Gene Interactions, Transcription Factor co-bindings,

o Why to study the variable graphs?

e Understanding
e Diagnosis, e.g., marker
e Treatment, e.g., drug development.
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Background

: What Type of Edges? Correlation to Conditional dependency

Correlation

10
0.9
0.8
0.7

A1: Children swim Al e
A2: Weather is hot A2 N
A3: High sale of ice cream by
A4: Wear less amount of clothes o
A5: High Electricity A4 -
Consumption A5 ¥

Cor(Ay, As) ~ 1 s
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Background: What Type of Edges? Correlation to Conditional dependency
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Background: What Type of Edges? Correlation to Conditional dependency

A3 A1

A4 — — A5
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How to Infer Conditional dependency Graph? Data-driven approach

@ Observed samples = Variable Graph

Context/Task(1)

Infer 9.@.
(%)
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How to Infer Conditional dependency Graph? Data-driven approach

@ Observed samples = Variable Graph
@ n observed data samples
e Each sample is a snapshot of all the entities

Context/Task(1) (variables).
Infer (D)%) e Each sample has measurements of p
-\ ..@ features/entities /variables.
G
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How to Infer Conditional dependency Graph? Data-driven approach

Context/Task(1)

Infer

N

@ Observed samples = Variable Graph
@ n observed data samples
e Each sample is a snapshot of all the entities
(variables).
e Each sample has measurements of p
features/entities /variables.
@ when n >> p (low-dimensional, n data samples
enough — a well estimated conditional
dependency graph about p nodes ).

@ When p > n (high-dimensional), need novel and
theoretically sound approaches
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0 Tasks in Joint Structure Learning from Heterogeneous Samples

@ From Heterogeneous Samples plus Knowledge beyond Samples
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Background: Variable graphs from Heterogeneous Samples

@ Most applications include heterogeneous samples.
@ For example:
o Totally ns: data samples
o From K different but related contexts, each having n; data samples, nyor = > n;

Context/Task(1)

Infer )

Context/Task(2) E
—= @

= (%)
Machine learning ".@
approach » © 23/120




Background: Variable graphs from Heterogeneous Data

Context/Task(1) Context/Task(2)

Casel:

Breast Cancer
Dataset

Leukemia
Dataset

Commonality

Caselll:

Cancer Cell
Dataset

Normal Cell

Dataset Differences
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Task |: Learning multiple related graphs

@ Learning multiple related graphs

o E.g., TF-TF interactions
o Three graphs are similar

Normal
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Task Il: Integrating additional knowledge

o Integrating known knowledge in Learning multiple related graphs
e E.g., known knowledge of Brain Connection E.g., known gene pathway knowledge

Context/Task(1)

Joint infer
Graph 1
XM G
Context/Task (K)
Graph K
GE
X ®)
Data Additional Knowledge Graphs 26 /120



Task Ill: Learning sparse changes between two graphs

@ A very interesting task:

e Find differences in the brains of people with diseases, e.g. Autism, Alzheimer's
e Use for understanding
o Use for diagnosis
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X () j-th Data matrix.

¥ () j-th Covariance matrix.

Q) j-th Inverse of covariance matrix (precision matrix).
p The total number of feature variables.

nior The total number of samples.

X™! the concatenation of all Data matrices.

Y ' the concatenation of all Covariance matrices.

Q™" the concatenation of all Inverse of covariance matrices (precision matrices).

Wit (WI(1)7 Wl(2)7 o WI(K))

wer (Ws, Ws, ..., Ws)
K The total number of contexts.
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Design Motivations: Our Research Philosophy in jointnets

Machine learning for Biomedicine
Our Research Philosophy:

Able to provide and
model biologica
explanations

Well-engineered
software systems

Be Trustworthy
Be Explainable

Be Accurate Be Scalable
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Computational Challenges: More Num of features (p) to consider

@ Yeast gene: 6K

i}
Human gene: 30K

@ Words interaction, millions of words
(p > 1,000, 000)
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Computational Challenges: More num of tasks (K) to consider

¥

Patient 1

“ Tissue 1
Normal vs Cancer ® / .
Tissue 2
______.—-—'

H{ ‘ Patient 2

|
o .
|n Patient 3 Tissue 3

K =2 K = 91

ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human genome. Nature,
489(7414):57-74, 2012.
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Why do we care computational complexity?

Estimators JGL WSIMULE
Computational complexity | O(Kp?) / iter O(K*p®)
Bottle neck SVvD Linear programming
When K =91, p = 30K JGL WSIMULE
Time 3.5 days / iter years
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Computational Challenges and Theoretical Soundness

@ For large-scale cases, we need to design
O(p?) methods, and consider
parallelization computer architectures!!!

@ At the same time, no sacrifices of the timal Error bound

accuracy, e.g., same level of ||§— 0*|l;

Estimated parameter
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© Joint Sparse GGMs: Methods and Variations
@ Basics: Sparse Gaussian Graphical Model (sGGM)
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Basics: Gaussian Case

@ In the Gaussian case, the conditional dependence and partial correlation structure are
equivalent.

@ This pairwise relationship can be naturally described via a graph G = (V, E).

@ Undirected Gaussian Graphical Model, Undirected nonparanormal Graphical model,
Markov random field;
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Two main tasks for Graphical Models:

o Probability Inference: estimate joint probability, marginal probability, and conditional
probability.

@ Structure learning: Give dataset X, learn the Graph structure from X (i.e., learn the
edge patterns between variables).

[ ] Torlo o]0
oo [amon]on] SGGM [ox| + [ox| o [on Decode
oo [ax] o anfos] >0 Joa[ 1 Jaz 0 Spars:ity 2
Samples X 1S DO o B ol [=] pattemn
0.05 (-0.25| 0.10 | -0.24 0 0.2 0 0.2
Data Covariances matrix =~ Sparse inversion o Connectome

(Precision Matrix)
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Background: Sparse Gaussian Graphical Model (sGGM)

o X ~ N(u,X).

Inverse Covariance Matrix

1 02 0 0 0

02 1 02 0 02 QO

0 02 1 02 0 [::::::i> (5§ (%)
0 0 02 1 02 {III'I'
0 02 0 02 1 (6 )y—(%)
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Background: Sparse Gaussian Graphical Model (sGGM)

o X ~ N(u,X).
@ Covariance matrix ~ can be calculated from X

Inverse Covariance Matrix

1 02 0 0 0

02 1 02 0 02 QO
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0 0 02 1 02 {III'I'
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Background: Sparse Gaussian Graphical Model (sGGM)

o X ~ N(u,X).
@ Covariance matrix ~ can be calculated from X

@ Precision matrix  is the inverse of covariance matrix X
Inverse Covariance Matrix

1 02 0 0 0

02 1 02 0 02 QO

0 02 1 02 0 [::::::i> (5§ (%)
0 0 02 1 02 {III'I'
0 02 0 02 1 (6 )y—(%)
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Background: Sparse Gaussian Graphical Model (sGGM)

o X ~ N(u,X).
@ Covariance matrix ~ can be calculated from X

@ Precision matrix  is the inverse of covariance matrix X

@ The sparsity pattern of () captures the conditional dependency pattern among variables.
@ For example,

Inverse Covariance Matrix

1 02 0 0 0

02 1 02 0 02 QO

0 02 1 02 0 [::::::i> (5§ (%)
0 0 02 1 02 {III'I'
0 02 0 02 1 ==

38/120



Background: Graphical Lasso for sGGM Structure Learning

e Traditionally, we estimate sGGM from samples (of a single task) using an /1 penalized
MLE formulation.

Graphical Lasso

[Friedman et al.(2008)Friedman, Hastie, and Tibshirani]

argmin — In det(Q2) + tr (Qf) + Anl|]1 (2.1)
Q
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Four kinds of Estimators for Estimating sGGM from Data

. Sparse Gaussian
Graphical Model — Graphical Model

l | l

[Neighborhood approach} [ Graphical Lasso } [ CLIME ] [ Elementary Estimator ]
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© Joint Sparse GGMs: Methods and Variations

@ Method: Joint Graphical Lasso (JGL)
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Task |: Joint structure learning of Related Graph Structures from Multiple

Related Datasets

Multi-
Context

Brain Cancer Lung Cancer Normal Brain

e x @ xD cw DX x® e . xx® e

Inference

v $ p
/Q /_\\/&?) /d\

Network
Inference
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JGL: Joint Graphical Lasso (JGL) for Jointly Estimating Multiple sGGMs

@ Most previous studies add a second penalty function P() into the penalized likelihood
formulation.

Joint Graphical Lasso (JGL) [Danaher et al.(2013)Danaher, Wang, and Witten]

argmin — Z(In det(Q) + tr (Q(i)f(i)))

Q)
' . (2.2)
£ 20 Y 199] + AP, 0, 0l

1
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JGL: Joint Graphical Lasso (JGL) for Jointly Estimating Multiple sGGMs

@ Most previous studies add a second penalty function P() into the penalized likelihood
formulation.

o P(QM QA .. Q) captures a certain assumption about relationships between
multiple graphs.

Joint Graphical Lasso (JGL) [Danaher et al.(2013)Danaher, Wang, and Witten]

argmin — Z(In det(Q) + tr (Q(i)f(i)))

Q)
' . (2.2)
£ 20 Y 199] + AP, 0, 0l

1

y
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JGL: Joint Graphical Lasso (JGL) for Jointly Estimating Multiple sGGMs

@ Most previous studies add a second penalty function P() into the penalized likelihood
formulation.

o P(QM QA .. Q) captures a certain assumption about relationships between
multiple graphs.

@ For example, fused norm to push graphs similar:
P(QM, Q@ k) =3 Q) - Ql)|;.

i>j

Joint Graphical Lasso (JGL) [Danaher et al.(2013)Danaher, Wang, and Witten]

argmin — Z(In det(Q) + tr (Q(i)f(i)))

Q)
' . (2.2)
£ 20 Y 199] + AP, 0, 0l

1

y
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Multi-task sGGMs estimators through JGL framework:

Group Lasso[Danaher et al.(2013)Danaher, Wang, and Witten|
P(QM, @, . o) =|a® 9@ . K]g,.

SIMONE[Chiquet et al.(2011)Chiquet, Grandvalet, and Ambroise]

T i K 1
P, 01, 00) = (3 (@)3)) + (X (-3
i#j k=1 k=1

Node JGL[Mohan et al.(2013)Mohan, London, Fazel, Lee, and Witten]
P(QM, QA . Q)= S RcON(Q() — Q).

ij,i>j

A\
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[ Multi-task Learning ]

Graphical Model
v
Sparse Gaussian . ’
L Graphical Model J—__{ Multi-task sGGMs

y
‘ Estimators of Multi- ’

[ Estimators of sGGM ]

task sGGMs
( Indirect learning of ] ‘ direct learning of ’ Only learning of
commonalities and differences commonalities and differences difference graph
\
Joint Graphical Lasso SIMULE - Fused-GlLasso
NSIMULE - DiffCLIME
WSIMULE - DensityRatio

JEEK - DIFFEE




© Joint Sparse GGMs: Methods and Variations

@ Method: SIMULE: Shared and Individual Parts of MULtiple sGGM Explicitly
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Explicit Estimation?

@ Main Task: How to estimate / learn shared (Q2s) and task-specific (QEI)) graph structures
among feature variables from multiple different but related datasets about the same set of
features.

@ Get to know both: House keeping interactions and Context-specific networks

Context/Task(1) Context/Task(2)
@ ®
|
& &
@D, 20, .. aP)ere @ Q? (@®,22, ..., z?P) e Rr
®-® © ® ® ®
® AL ® )
®® |[|®® ®» ®
Q

1 2
Q) 3

Individual(1) Individual(2) Shéred
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Method: "SIMULE" Formulation

We model each task’s precision matrix Q() as a sum of task-specific Qsi) and task-shared Qg:

o) =l + qg (2.3)
OSO ONO

S L ™
® & ©

®6O |60 ||®@
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SIMULE method: Overview Figure
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Goals

SIMULE model aims to have the following properties:
@ It estimates the shared and task-specific graph patterns explicitly and simultaneously.
@ It can control the estimation of shared versus the task-specific patterns.
@ |t provides a strong theoretical guarantee.
o

It achieves good empirical performance.
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Why JGL Estimators Can't Get "SIMULE"

@ JGL estimators are mostly solved by ADMM based optimization.

CLIME estimator [Cai et al.(2011)Cai, Liu, and Luo]

argmin||Q||1
e (2.4)
Subject to: [|XQ — ]|oc < An
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Why JGL Estimators Can't Get "SIMULE"

@ JGL estimators are mostly solved by ADMM based optimization.
@ With "SIMULE" formulation, difficult to separate the optimization into independent
ADMM sub-procedures. Because,

e The derivative of "SIMULE" in the JGL, i.e., gradient of In det(QEi) + Q) gets inverse of
matrix summation.
e Inverse of the summation of two matrices makes the optimization not separable.

CLIME estimator [Cai et al.(2011)Cai, Liu, and Luo]

argmin||Q||1
e (2.4)
Subject to: [|XQ — ]|oc < An
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Why JGL Estimators Can't Get "SIMULE"

@ JGL estimators are mostly solved by ADMM based optimization.
@ With "SIMULE" formulation, difficult to separate the optimization into independent
ADMM sub-procedures. Because,

e The derivative of "SIMULE" in the JGL, i.e., gradient of In det(QEi) + Q) gets inverse of
matrix summation.
e Inverse of the summation of two matrices makes the optimization not separable.
@ Therefore, we use an alternative formulation for sGGM: A constrained /1 minimization
formulation.

CLIME estimator [Cai et al.(2011)Cai, Liu, and Luo]

argmin||Q||1
e (2.4)
Subject to: [|XQ — /]|oc < Ap
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SIMULE: to Infer Shared and Individual Parts of MULtiple sGGM Explicitly

@ By using a constrained ¢; minimization formulation, estimator SIMULE can jointly learn
multiple graphs from multiple different but related sample datasets (on the same set of
feature variables).

@ Optimization: Column-wise parallelizable;

oM a® ol g = ar%minz 12911 + K112 (2.5)
Q,’ Qs i

Subject to: [|[ED(Q) + Qg) = /]joe < Apy i=1,..., K
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Theoretical Results: Statistical Convergence Rate

@ Comparing SIMULE v. CLIME w.r.t the statistical convergence rate for estimating K

graphs:

@ By assuming n; = “t:

Multi-task:

K Single-task:

(log(Kp))

Ntot

> O(*£P))
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Theoretical Results: Statistical Convergence Rate

@ Comparing SIMULE v. CLIME w.r.t the statistical convergence rate for estimating K

graphs:

Multi-task:

K Single-task:

O( log(Kp))

Ntot

> O(*£P))

@ By assuming n; = “t:

@ We can conclude that % < Klogp

Ntot
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Theoretical Results: Statistical Convergence Rate

@ Comparing SIMULE v. CLIME w.r.t the statistical convergence rate for estimating K

graphs:

Multi-task:

K Single-task:

O( log(Kp))

Ntot

> O(*£P))

@ By assuming n; = “t:

@ We can conclude that % < Klogp

Ntot

@ This indicates that the multi-task estimator is better!!!
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Results on Two Real-World Datasets: Number of Matched Edges versus

the Existing Domain Databases

@ Two real world datasets:
o (1) Gene expressions of samples in 2 different cell types
o (2) Transcription Factors’' ENCODE ChIP-seq measurements across 3 different cell lines

@ Validation by counting the overlapped interactions according to the existing bio-databases
(Mlnact). figure
@ Our methods obtain the most matches compared to the state-of-the-art baselines.

-S\MULE-JGL fused [llJGL-group [ISIMONE [EICLIME [ZJSIMONE-I[JSIMULE-|
(a) Gene expression matching 14 (b) TF-TF interaction matching

30 12

N
o
]
® =)

Number of Matches
>

Number of Matches

=)
IS

o
)

o
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© Joint Sparse GGMs: Methods and Variations

@ Method Variation: NSIMULE: Gaussian to nonparanormal
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Model Variation: NSIMULE for jointly estimating multiple nonparanormal

Graphical Models

@ The Gaussian assumption of our model can extend easily to a more general distribution
family: nonparanormal.
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Model Variation: NSIMULE for jointly estimating multiple nonparanormal

Graphical Models

@ The Gaussian assumption of our model can extend easily to a more general distribution
family: nonparanormal.

@ The only necessary change: by simply replacing the sample covariance matrices () in
Equation 2.5 into the kendal’s tau correlation matrices S().
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Model Variation: NSIMULE for jointly estimating multiple nonparanormal

Graphical Models

@ The Gaussian assumption of our model can extend easily to a more general distribution
family: nonparanormal.

@ The only necessary change: by simply replacing the sample covariance matrices () in
Equation 2.5 into the kendal’s tau correlation matrices S().

e We denote this estimator as nonparanormal SIMULE (NSIMULE).
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© Joint Sparse GGMs: Methods and Variations

@ Method Variation: WSIMULE: Adding Extra knowledge
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Task Il: Integrating additional knowledge

@ Many additional knowledge exist beyond samples when Joint structure learning;
e E.g., known prior knowledge about Brain Connection

Context/Task(1)
Joint infer
Graph 1
x® (e
Context/Task (K)
Graph K
GE
x®

Data Additional Knowledge Graphs 58 / 120



Solution: Using Knowledge as Weight in Regularization (KW-norm)

Integrating additional knowledge through a novel regularization function R(-)

K K
REQDY) = > IW 0 QP + >~ [IWs 0 Qs]la (2.6)
=il i=1

o Q) = QSI) + Qs
{W,(i)}: weights describing knowledge of each individual graph.

Ws: weights describing knowledge of the shared graph.
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Solution: Using Knowledge as Weight in Regularization (KW-norm)

@ Use tot notation

R(Q™) = [|W/" 0 Q|1 + || W™ 0 Q5|1 (2.7)

o W/ weights describing knowledge of each individual graph.
o WE": weights describing knowledge of the shared graph.
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Solution: Using Knowledge as Weight in Regularization (KW-norm)

@ Use tot notation

R(Q™) = [|W/" 0 Q|1 + || W™ 0 Q5|1 (2.7)

W/et: weights describing knowledge of each individual graph.
WEt: weights describing knowledge of the shared graph.

No need to design knowledge-specific optimization

KW-norm is flexible.
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Example I: KW-norm representing the edge-level knowledge

@ e.g., Spatial distance among brain regions;

Cc B dpc
\ c dpc

G

61 /120



Example Il: KW-norm describing the node-level knowledge

@ e.g., Xy is a known hub node;

1 Yy |1 |1 |1
2 |1y 1y |1y |1y
3|1 |1y 1|1
4|1 |1yt 1
511 |1/y| 1 |1
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WSIMULE: A weighted SIMULE estimator

0,0, .. 89, 95 = argmin 3110}l + eK||s]h
Q/I Qs i

Subject to: [[ED(QY) + Qg) = /[jee < Apy i=1,..., K

o ADD W), ws !

Qb k) Qs = Zargminnw}’) o Q7 |l; + K||Ws 0 Qslx
i QSI),QS (28)
Subject to: [|[ED(QY +Qs) — Il < N i€1,.... K
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© Joint Sparse GGMs: Methods and Variations

@ Large Scale Variation of WSIMULE: JEEK

64 /120



Background: Elementary Estimator (EE) for joint sGGMs tasks

.
J

Starting point

@ Previous studies:

o Elementary Estimator:

> =

o
— 7
ﬂ Pre-compute 0(p3)

Starting point Compute once

leprént-wise operator

o(@*)
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JEEK: Combine EE and KW-norm

Elementary Estimator

argminR ()
9 (2.9)

~

Subject to: R*(6 — B*(¢)) < An

+

R(Q1F) = || Wy 0 Q471 + || Wi 0 Qs
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JEEK Method: Joint Elementary Estimator incorporating additional

Knowledge (JEEK)

EE R(") 9 6, R*(+)
EESGGM | [[-]i | @ | [Tt | Il
JEEK kw-norm | Q| inv[T,(X™")] | kw-dual

JEEK

argmin|| W/ o Q)[|1 + |[Ws* o Q5|
Qtof’QtOt
1
7 Subject to: || o (2% — inv(T () [|os < A
Wt n (2.11)
1
[l © (@ = inv(Ty(Z°))lloe < An
s 67 /120



JEEK — Solution

o Fast and Scalable solution® — p? small linear programming subproblems with only K + 1
variables:

argminz |w;ai| + K|wsb]
a,-,b i
An (2.12)

Subject to: |a; + b — ¢j| < ———,
min(w;, ws)

i=1 K

g ooy

taj = Qg'—)j’k (the {j, k}-th entry of Q)
b= Qs; «
& = [Tu(ED) 4
V\/J('k) = w; and VVJSk = Ws.
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Why JEEK is better

@ Rich and flexible for integrating additional knowledge
e e.g., spatial, anatomy, hub, pathway, location, known edges;

@ Parallelizable optimization with small sub-problems.
@ Theoretical guaranteed

Solution of
Vanilla MLE:
Backward

Mapping

Elementary
Estimator
for sGGMs

Backward
mapping

Joint
Estimation

Proposed:
JEEK
Estimator

Knowledge as Weights Joint Elementa ry
Estimator for
Multiple sGGMs
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Theoretical Results: Sharp convergence rate

@ Sharp convergence rate as the state-of-art

||§tot_Qtot*HF §4 /ki+ks)\n
max(|| VVItot ° (ﬁtot _ Qtot"‘)Hoo7 ||Wstot ° (ﬁtot _ Qtot*Hoo) < 2, (213)
W™ o (1 — Q)| + [|Ws™ o (QF — Q5 )l1 < 8(ki + ke) s

Where a, ¢, k; and k, are constants

||§tot_Qtot*||F

tot tot
16nlan11_7a;{x(W, a0 Ws Jvk)\/(k;—kks)log(Kp) (2.14)

<

K2 Ntot
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Empirical Results on Multiple Synthetic Datasets

(a)AUC vs. p - [hub,K=2,n=p/2] 15 (b)Time vs. p-[hub,K=2,n=p/2] 1éc)Time vs. p-[perturb,K=2,n=p/2]

0.8
| [F=-JEEK -5 JEEK
o | |- W-SIMULE -4 W-SIMULE
~0.65 ___ = A4 )GL-hub & Al 4 JGL-perturb)
O i 510 P 510 Pt
o ! o & | o P ”
e H = S | = - |
] 04 1 [ ,_»A 1 [ ~/.f~2 1
2 ! £ ;75—5‘———9—_—( £ ;75—5‘———9—_—(
< I [—8—JEEK (== 1 = 5 1
0.2 : —+ JEEK-NK : :
| |-A-W-sIMULE \ \
I |4 JGL-hub I 1
0 L 0 L 0 L
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
p (number of features) p (number of features) p (number of features)

e JEEK outperforms the speed of the state-of arts significantly (~ 5000x faster);
o JEEK obtains better AUC as the state-of-the-art;
e JEEK obtains better AUC than JEEK-NK (no additional knowledge).
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© Joint Sparse GGMs: Methods and Variations

@ Large Scale Variation of Differential sGGM: DIFFEE
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Task Ill: To Learn Differential Network from two Datasets

e Focus: How to directly estimate / learn Differential Network (A) from Two datasets (X,
X4) about the same set of features in a large scale.

Sparsity Assumption:

Estimating the Difference by separately Learning Two Graphs from two datasets has
Limitations

o If estimating two graphs separately, we need to enforce sparsity assumption on both
graphs

@ However, in some real-world applications, G., Gy are not sparse.
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Direct modeling the differential networks |: Fused JointGLasso

Fused GLasso

By adding a regularization to enforce the sparsity of A = Q. — Q4, we have the following

formulation:

argmin_ £(9c) + LQa)A(l19]l1 + 19ll1) + Aol Al (2.15)
Qc,Q4%-0,A

The Fused Lasso assumes Qcase, Qcontrol, . However, many real world applications, like brain
imaging data, only assume the differential network A is sparse.
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Direct modeling the differential networks Il: Differential CLIME

A recent study proposes the following model, which only assume the sparsity of A.

Differential CLIME

argmin ||Al|;
A

= R R (2.16)
Subject to: [|[ZAYy — (e — Zd)||oo < An

However, this method is solved by a linear programming. It has p? variables in this method.
Therefore, the time complexity is at least O(p®). In practice, it takes more than 2 days to
finish running the method when p = 120.
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Direct modeling the differential networks Ill: Density Ratio

The above methods all make the Gaussian assumption. This method relaxes the model to the
exponential family distribution.

Density Ratio

% x exp(3 Dei(x)) (2.17)

Here A; encodes the difference between two Networks for factor f;.

Density Ratio

(x:0) = ﬁexp(ztj A (X)) (2.18)

Here A; encodes the difference between two Networks for factor f;. N() is a normalization
term.
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Direct modeling the differential networks Ill: Density Ratio

Density Ratio for Markov Random Field

B(x) = pa(x)r(x;6)

KL[PcHﬁ] = Const. — /Pc(X) log r(X; G)C/X. (2.19)
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DIFFEE: Large Scale Differential sGGM

@ Two cases : d (disease) & c (control)

argmin||0||1 argmin||Al[;
0 A
Subject to/:\ (2.20) A=y = Subject tci: ) (2.21)
10 — B ()[|oc < An 1A = B (X4, Xe)lloo < An
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DIFFEE: Large Scale Differential sGGM via EE

Elementary Estimator (EE)

argminTR(6)
0 ~ (2.22)

Subject to: R*(0 — B*(¢4)) < An

EE R() | 6 0, R*(-)
EE-sGGM | ||-[|1 | Q _ [TV(Z)]‘lA I oo
DIFFEE | |[-[ln | & | (ITEa)] "~ [T(E ) | - Il

argmin ||A||1
A

(2.23)

Subject to: ||A — ([Tv(id)]_l - [Tv(ic)]_l) oo < An 79/120



DIFFEE: Optimization Solution

@ Close form R R
A =S5 (T(Z)] = [T ™) (2.24)

[Sx(A)]j = sign(Aj) max(|A;| — A, 0) (2.25)

o GPU-parallelizable

] 'i Closed form
g ; Pre-compute 0 (p?) 0(p?)& GPU

Starting point Compute once
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Computational Complexity of DIFFEE:

@ It has closed-form solution.
@ |t is faster than the previous studies:
Density .
DIFFEE | FusedGLasso . Diff-CLIME
Ratio
o(p*) | Oo(Tx+p*) [ O((n+p°)) o(p°)
e O(p?) to tune different \,

Theoretical guaranteed
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Theoretical Results: Statistical Convergence Rate

@ error bound: ||A* — £||

@ DIFFEE achieves similar error bound as the previous studies.

DIFFEE | FusedGLasso | PS™Y | Diff-CLIME
Ratio
[ | [
min?r%:nd) N/A min?r%cl,)nd) min?r%:nd)

82 /120



Empirical Results on fMRI Datasets: the Classification Accuracy

(1) ABIDE dataset

(]
@ (2) Train the differential network and use it as the parameter of a LDA classifier

Method DIFFEE | FusedGLasso | Diff-CLIME
Accuracy (%) | 57.58% 56.90% 53.79%
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[ Multi-task Learning ]

Graphical Model
v
Sparse Gaussian . ’
L Graphical Model J—__{ Multi-task sGGMs

y
‘ Estimators of Multi- ’

[ Estimators of sGGM ]

task sGGMs
( Indirect learning of ] ‘ direct learning of ’ Only learning of
commonalities and differences commonalities and differences difference graph
\
Joint Graphical Lasso SIMULE - Fused-GlLasso
NSIMULE - DiffCLIME
WSIMULE - DensityRatio

JEEK - DIFFEE




Recap: Time line of tools jointnets.org

Proxy
Backward
mapping

u

http://jointnets.org/

Timeline of
JointNets

N\;

Elementary
Estimator
for sGGMs

Joint Esti
and Weighted L1
(Knowledge as
Weights)

Solution of |-

Vanilla MLE:
Backward
Mapping

JEEK: 5

WSIMULE:

SIMULE:

Contes n/v sk (2)

el

Estimator

ﬂAutlsm ﬂCOntrol

.

kDIFFNet:

DIFFEE:

Context / Task (1)

°0°
R,

= Add
/ Knowledge in
DIFFEE
®)
O-©
Differential / Individual
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Related Publications:

o JEEK

o A Fast and Scalable Joint Estimator for Integrating Additional Knowledge
in Learning Multiple Related Sparse Gaussian Graphical Models, B Wang, A
Sekhon, Y Qi, ICML 2018

o DIFFEE

o Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian
Graphical Model Structure, B Wang, A Sekhon, Y Qi, AISTATS 2018

e SIMULE, NSIMULE and W-SIMULE

e A constrained L1 minimization approach for estimating multiple sparse
Gaussian or nonparanormal graphical models, B Wang, R Singh, Y Qi, Machine
Learning 106 (9-10), 1381-1417, 2016

o A Constrained, Weighted-L1 Minimization Approach for Joint Discovery of
Heterogeneous Neural Connectivity Graphs, C Singh, B Wang, Y Qi, Advances in
Modeling and Learning Interactions from Complex Data, NeurlPS 2017 Workshop
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R Package is Available !!!

@ The project website: http://jointnets.org/

@ R package "simule”:
o install.packages("simule")
o demo(simule) !
@ R package "diffee":
e install.packages("diffee")
o demo(diffee) !
@ R package "jeek”:
e install.packages("jeek")
e demo (jeek) !
@ A complete package "jointNet” in CRAN.
e install.packages(’JointNets’, dependencies=TRUE)
e Including all above tools and more variations, plus network visualization, synthetic data
simulation, graph evaluation and downstream classification;
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@ Summary of Other Research: http://deepchrome.org
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Recap: Our research philosophy

Machine learning for Biomedicine
Our Research Philosophy:

Able to provide and
model biological
explanations

Well-engineered
software systems

Be Trustworthy
Be Explainable

Be Accurate Be Scalable
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Overview of My Team's Three Research Topics

1. Fast and Scalable Learning 2. Making Explainable Deep 3. Making Deep Learning
Algorithms to Extract Related Learning for Biomedicine trustworthy
Graphs from Samples

| SRS
B Squeeze Featue i
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Biology in One Slide?

RNA PROTEIN CELL ORGANISM

TranscriptionTranSIation

T 7 : |
CATGACTG
CATGCCTG ﬁ Disease

Genetic Variant
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Big Data of Bio-Medicine

Twitter
1-17 PB/year .
SS5SSS
© iss
- Astronom § =§=§
S | EB/yeary Genomics g §§
2-40 EB/year = §§
5 =
g P o
Q¢
x°
YouTube "5
««
o 1-2 EB/year

Adapted from Stephens ZD et al

== ROADMAP .
PLOS Biol 2015 ’/ﬁ{v ﬁ% epigenomics
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Last Year's Tutorial Talk Covered: deepChrome tools

Biological  [DNA | |RNA | |PROTEIN | |CELL | ORGANISM

Modules
) 3; L

Transcription Translation

? ?

CATGACTG
CATGCCTG # Disease

Genetic Variant

Machine
Learning
Modules
(composable)

prediction

—’-—n
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Last Year's Tutorial Talk Covered: deepChrome tools

Timeline of http://deepchrome.org/
deepchrome  MyUsT-CNN DeepMotif GakCo-SvM MemNet
our tools (AAAIL6)  (PSB17) (ECML17) (ICLR wig)

2012 -
2015
i i l i PrototypeNet

Multitask Transfer DeepChrome Attentive DeeleffChrome

E:qefeir;tein iterrizgl (Bioinf 16) Chrome (Bioinf 18)
eduen (Tea815) (NeurlPS17) o120

(PlosO 12)



Time line of our tools via deepchrome.org

Timeline of http://deepchrome.org/
Attentive
deepchrome  musT-cNN Chrome GakCo-svM MemNet
our tools (AAAIL6) (Neur|p517) (EcML17)  (ICLRw18)
Im
PrototypeNet

Multltask Transfer DeepChrome DeeprlOtIf DeeleffChrome

Deep Protein String (Bioinf 16) (PSB17) (Bioinf 18)

sequence Kernel

Tagging (TCBB15)

(PlosO 12) 99/120



Deep
Learning
2Read

A List of Deep
Learning Papers We
Read:

Home

About

Readings ByCategory
Readings ByTag
DeepBasics
MLBasics
2019sCourse
2019Reads
2018Reads
2017Course
2017Reads

Readings ByReadDate

Potential Readings

UVA Qdata Lab
GitHub Qdata
© Tweets by @Qdatalab

Deep Learning Readings Organized by

Detailed Tags (2017 to Now)
https://gdata.github.io/deep2Read/

Besides using high-level categories, we also use the following detailed tags to label
each read post we finished. Click on a tag to see relevant list of readings.

- adversarial—examplesl adversariaHossl alphagol amortizedl
architecture-search| associative| attention| attribution| autoencoder|
autoregressivel auxiliaryl backpropl beaml bert bias-variancsl binaryl
black—boxl blockingl brainl casuall certiﬁed—defensel compositionl compressionl
crisprl cryptographyl curriculuml denoisingl dialogl difference—analysisl
differentiationl dimension—reductionl discretel distillationl distributedlﬂl
domain-adaptalionl dynamiclﬂﬂ embedding| expressivel few-shotl
forcingl fuzzinglﬂl generalizationl generativel genomicsl geometricl graphl
graphical-model| hash| heterogeneous| hierarchical| high-dimensionai|
hyperparamsterl imitation-learningl imputationl inﬂuencs-functionsl infomaxl
interpretablel invariant| knowledge—graph| Iearnzlearnl Iow—rankl manifoldl

maichingl maiching—netl mairix—completionl memorizationl memoryl

meia~learning| metamorphicl metric—learningl mimicl mobilel model-cri

ism
moleculel multi-labell multi-laskl neural-programming| neuroscience|M nolisal
nonparametriclm optimizationl parallell parsimoniousl planningl pointerl
privacyl programl propagaiionl proteinl pruninglﬁl randoml recommendaiionl
relational ﬂ E‘ m‘ robustnessl sample—qualityl samplingl scalablel securel
semi-supervised| seq2seq| set| sketch| software-testing| sparsity| structured |
stylometricl temporal—diﬁ’erencslﬂl transfer—learningl treesl understandingl
value—netvvorks| variational| veriﬁcalionl visualizingl white—boxl

I11- adver<arial-exambples
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Time line of our tools via trustworthymachinelearning.org

http://trustworthymachinelearning.org/

Feature
Timeline of |  DeepCloak Squeezing
our tools (ICLR w17) (NDSS18) MCTSBug

! ! !
—

Evade via Topology Adversarial- DeepWordBug
Evolution Theory of Playground (DeepSecure
(NDSS16) Adversarial  (VizSecl7)  wkp18) 102 /120
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Overview Figure of the three rates: Statistical Convergence Rate

Optimization
Convergence Rate

h_J\/\ Stop Po
Statistical
Convergence
\_ i Rate

Running Time (Computational Complexity)
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Statistical Convergence Rate: error bounds

@ Suppose the model parameter you need to estimate is 6, the truth is 6*
o || —0"| or R(6 —0*). R] are mostly certain norm functions.

@ When high-dimensional (p > n), many sparse estimators’ error bounds relate to Iogp
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Overview Figure of the three rates: Optimization Convergence Rate

-

Optimization
Convergence Rate

. Stop Po
Statistical
Convergence
N i Rate

~

Running Time (Computational Complexity)
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Optimization Convergence Rate: optimization speed

Linear, e.g. gradient descent, ADMM
Higher order, e.g. quadratic

Closed form solution, e.g. vanilla linear regression solution

A rough comparison of speed: closed form > Higher order > linear;
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Markov Random Field

Markov Random Field

Given an undirected graph G = (V, E), a set of random variables X = (X, ),cy indexed by V
form a Markov random field with respect to G if they satisfy the local Markov property:

A variable is conditionally independent of all other variables given its neighbors:

Xy L Xy \w() [ Xny)

This property is stronger than the pairwise Markov property:

pairwise Markov property

Any two non-adjacent variables are conditionally independent given all other variables:
Xu A XV | XV\{u,v} if {U, V} ¢ E
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Clique factorization

If this joint density can be factorized over the cliques of G:

pX=x)= ] oclx)

Cecl(G)

then X forms a Markov random field with respect to G. Here cl(G) is the set of cliques in G.
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Log-linear Model

Any Markov random field can be written as log-linear model with feature functions fx such
that the full-joint distribution can be written as:

P(X =x) = %exp (Z Wkak(X)>
k

. Notice that the reverse doesn't hold.
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Example I: Pairwise Model

Pairwise Model

1
P(X =x) = 7o) &P ZQ:X? + Z 0 Xs Xt
( ) seV (s,t)€E

Examples:
@ Gaussian Graphical Model
@ Ising Model

These two models have good estimators to infer the MRF. Generally, estimate © is difficult.
Since it involves computing Z(©) or its derivatives.
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Example I: Pairwise Model — Gaussian Case

Gaussian Case

Solution:
. 1 7
In £(x,9) o Indet(2) — tr (an X—p)(x—p ) (3.1)

= Indet(Q) — tr (Q§) (3.2)

where S is the sample covariance matrix.

Ising Case
For the Ising model, we use generalized covariance matrix to avoid the normalization term.
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Example Il: Non-pairwise model — Nonparanormal Graphical Model

Are there any non-pairwise model which is easy to estimate?

Nonparanormal Graphical Model

PX =x) = g (~5(76) - TE () - )

where f(X) = (f(X1), 2(X2), ... f(Xp)) and each f; is a univariate monotone function.
F(X) ~ N(u, 3).
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Elementary Estimator (EE): Step | — Backward mapping

-~

e Backward mapping B*(¢) of the parameter (Solution of Vanilla Maximum Likelihood
Estimator (MLE))

@ Vanilla MLE: argmax £(6)
0

o Already close to true parameter
o But without assumptions e.g., sparse
o For instance, linear regression solution (XTX)~1XTY

115 /120



Elementary Estimator: Step Il — Optimization formulation

Elementary Estimator (EE)

argminRR ()
g R (3.3)
Subject to: R*(6 — B*(¢)) < An
o Let R(:) =l - [lx \
argmin||0||1
9 R (3.4)

Subject to: [|0 — B*(¢)]]oo < An

@ Easy to prove the sharp convergence rate when R and B* satisfy certain conditions.
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EE-Benefit: Fast and scalable solution

@ A soft-thresholding operator (closed form)
o Closed form & O(p?)
e Easy to parallelize in GPU

0 = S\,(B*(9))

[5:(A))5 = sign(Ay) max(|Az| — A,0) (3.5)
@ Element-wise
Oln oy O Oy on %z 7 O
E=Cov(X)= ' 02 E=Cov(X)= G:” 52 E=Cov(X)= Ufl 0:” _ 02
’ Gmn Gnl GnZ o Gm; Uﬂl GnZ o

Apply same operator
Independent calculation 117 /120



EE-GM: Elementary Estimator for sGGM

e Vanilla MLE: argmin — log(det(Q))+ < Q, X >
Q

e Backward mapping of Q is ¥ 71
@ Not invertible when p > n
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EE-GM: Elementary Estimator for sGGM

e Vanilla MLE: argmin — log(det(Q2))+ < Q, X >
Q

e Backward mapping of Q is ¥ 71

@ Not invertible when p > n

@ Need apporximated backward mapping
e proxy backward mapping 0, ~ B*(g)
o InsGGM, 6, = [T, (2)]*

Solution of L1
Vanilla IV.ILE .(no L1 backward \ Eler:nentary
regularization): Estimators

backward mapping mapping
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EE-GM: Elementary Estimator for sGGM

argmin||0||1
0 (3.6)

Subject to: || — B*(9)]]oc < An

° 0, =[T,(I)* U

argmin||Q[1, off
Q R (3.7)
subject t0:||Q — [T ()] }]oo.off < An

EE R() | 0 O, R*
EESGGM | 1111 | Q | [T | 1 1w 119120




EE-Benefit: Easy to prove error bound

Proxy
Backward
@ Error bound: Mappin g
110 — 6 [|oe < 2An
16— 0] < 4/5n (3.8)
116 — 6*||1 < 8sAn
@ Condition: R
An 2 (|00 = 6"[|oo (3.9)

@ Constant: s is the num of non-zero entries.
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