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Background: Entity Graph

Many applications need to know
interactions among entities:

Gene Interactions
Brain connectivity

Why to study the entity graph
Understanding
Diagnosis, e.g., marker
Treatment, e.g., drug development.
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Background: What Type of Edges? Correlation to
Conditional dependency
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Background: How to Infer Entity Graph?

To measure conditional dependency
interactions physically.
Largely unknown and hard to
measure physically.

#Physical check for all possible
conditional dependency edges = 2p

(binary experiments)
For example, p = 160 important
regions in human brain
For example, p = 30000 genes in
human cell

Much more than Trillions (240) of
biological experiments
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Background: Entity graphs from Observed Samples
(Entity as Feature)

Trillions of biological experiments =⇒
Data-driven approach
Experiments (not physically check)
=⇒ Data =⇒ Entity Graph

n experiments→ n data samples
Each sample is a snapshot of all the
entities.
Each sample has measurements of
p features/entities.

n data samples is enough→ a well
estimated entity graph of p when
n >> p (low-dimensional).
p > n (high-dimensional) needs novel
approaches
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Background: Entity graphs from Heterogeneous Data
(Entity as Feature)

Most applications have heterogeneous samples.
For example:

Totally ntot data samples
From K different but related contexts, each has ni data samples
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Background: Entity graphs from Heterogeneous Data
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Task I: Learning multiple related graphs

Learning multiple related graphs
E.g., TF-TF interactions

Three graphs are similar
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Task II: Integrating additional knowledge

Integrating known knowledge in Learning multiple related graphs
E.g., known knowledge in Brain Connection
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Task III: Learning sparse changes between two graphs

A very interesting task:
Find differences in the brains of people with diseases, e.g. Autism,
Alzheimer’s
Use for understanding
Use for diagnosis
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Notations

X (i) i-th Data matrix.
Σ(i) i-th Covariance matrix.
Ω(i) i-th Inverse of covariance matrix (precision matrix).

p The total number of feature variables.
ntot The total number of samples.
X tot the concatenation of all Data matrices.
Σtot the concatenation of all Covariance matrices.
Ωtot the concatenation of all Inverse of covariance matrices

(precision matrices).

W tot
I (W (1)

I ,W (2)
I , . . . ,W (K )

I )

W tot
S (WS,WS, . . . ,WS)
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Motivation
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Motivation: More Num of features (p) to consider

Yeast gene: 6K
↓

Human gene: 30K

Words interaction, millions of
words (p > 1,000,000)
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Motivation: More num of tasks (K ) to consider
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Motivation: Limitation I – Slow Computation

The best
baseline of

Task I Task II Task III

Computational
complexity

O(Kp3) / iter O(K 4p5) O(p3) / iter

Bottle neck SVD
Linear
program-
ming

SVD

If K = 91 and p = 30K ⇓

The best
baseline of

Task I Task II Task III

Time 3.5 days / iter 6 trillion years 1 hour/ iter

Can we have a O(p2) method?
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Motivation: Limitation II – No consideration of
parallelization

Reduce O(p2) to O(1).
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Motivation: Limitation III: Lack of error bound analysis

||θ̂ − θ∗||

Missing analysis under a
high-dimensional setting
(p ≥ n)

No sacrifices of the accuracy
from speeding-up and
scaling-up the algorithm
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Our Aim: Fast and Scalable estimators for three types
of joint graphs estimation

Fast and scalable estimators for the three tasks

Parallelizable algorithms

Integrating additional knowledge

Sharp convergence rate
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Solution for Limitations - Elementary Estimator
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Background: summary of the previous optimization
strategy

e.g., ADMM algorithm
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Elementary Estimator (EE) for joint sGGMs tasks

Previous studies:

Elementary Estimator:
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Elementary Estimator (EE): Step I – Backward
mapping

Backward mapping B∗(φ̂) of the parameter (Solution of Vanilla
Maximum Likelihood Estimator (MLE))
Vanilla MLE: argmax

θ
L(θ)

Already close to true parameter
But without assumptions e.g., sparse
For instance, linear regression solution (X T X )−1X T Y
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Elementary Estimator: Step II – Optimization
formulation

Elementary Estimator (EE)

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn

(3.1)

Let R(·) =‖ · ‖1 ⇓

argmin
θ
||θ||1

Subject to: ||θ − B∗(φ̂)||∞ ≤ λn

(3.2)

Easy to prove the sharp convergence rate when R and B∗ satisfy
certain conditions.
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EE-Benefit: Fast and scalable solution

A soft-thresholding operator (closed form)
Closed form & O(p2)

Easy to parallelize in GPU

θ̂ = Sλn (B∗(φ̂))

[Sλ(A)]ij = sign(Aij) max(|Aij | − λ,0) (3.3)

Element-wise
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Background: sparse Gaussian Graphical Model
(sGGM) to derive Conditional Independence Graph
from data
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EE-GM: Elementary Estimator for sGGM

Vanilla MLE: argmin
Ω
− log(det(Ω))+ < Ω,Σ >

Backward mapping of Ω is Σ−1

Not invertible when p ≥ n

Need apporximated backward mapping

proxy backward mapping θ̂n ≈ B∗(φ̂)

In sGGM, θ̂n = [Tv (Σ̂)]−1
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EE-GM: Elementary Estimator for sGGM

argmin
θ
||θ||1

Subject to: ||θ − B∗(φ̂)||∞ ≤ λn

(3.4)

θ̂n = [Tv (Σ̂)]−1 ⇓
EE-sGGM

argmin
Ω
||Ω||1,,off

subject to:||Ω− [Tv (Σ̂)]−1||∞,off ≤ λn

(3.5)

EE R(·) θ θ̂n R∗

EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞
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EE-Benefit: Easy to prove error bound

Error bound:

||θ̂ − θ∗||∞ ≤ 2λn

||θ̂ − θ∗||F ≤ 4
√

sλn

||θ̂ − θ∗||1 ≤ 8sλn

(3.6)

Condition:

λn ≥ ||θ̂n − θ∗||∞ (3.7)

Constant: s is the num of non-zero
entries.
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Method I: FASJEM

32 / 108



Outline
1 Background
2 Motivation
3 Solution for Limitations - Elementary Estimator
4 Method I: FASJEM

Background
Method
Results

5 Method II: JEEK
Background
Method
Results

6 Method III: DIFFEE
Method
Results

7 Discussion
Questions from Proposal
Future works
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Task I: Learning multiple related graphs

Learning multiple related graphs
E.g., TF-TF interactions

Three graphs are similar
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Background: Multi-task sGGMs

A pipeline to infer Multiple Related Graphs from heterogeneous
datasets X(1),. . . X(K )1.

1X tot : the concatenation of (X (1),X (2), . . . ,X (K )).
Σtot : the concatenation of (Σ(1),Σ(2), . . . ,Σ(K )).
Ωtot : the concatenation of (Ω(1),Ω(2), . . . ,Ω(K )).
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Background: Joint Graphical Lasso

Graphical Lasso

argmin
Ω
− log det(Ω)+ < Ω,Σ > +λn||Ω||1 (4.1)

Add R′(·) ⇓
Joint Graphical Lasso

argmin
Ω(i)>0

∑
i

(−L(Ω(i)) + λ1
∑

i

||Ω(i)||1

+ λ2R′(Ω(1),Ω(2), . . . ,Ω(K ))

(4.2)

Ωtot = (Ω(1),Ω(2), . . . ,Ω(K )).
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Enforcing relatedness of multiple graphs through
Regularization: FASJEM-norm

EE-sGGM

argmin
Ω
||Ω||1,,off

subject to:||Ω− [Tv (Σ̂)]−1||∞,off ≤ λn

(4.3)

Add R′(·) ⇓
FASJEM-norm

R(Ωtot ) = ||Ωtot ||1 +R′(Ωtot ) (4.4)
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Elementary Estimator (EE)

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn

(4.5)

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞
FASJEM || · ||1 +R′ Ωtot inv [Tv (Σ̂tot )] max(|| · ||∞,R′∗)

FASJEM

argmin
Ωtot

||Ωtot ||1 +R′(Ωtot )

s.t .||Ωtot − inv(Tv (Σ̂tot ))||∞ ≤ λn

R′∗(Ωtot − inv(Tv (Σ̂tot ))) ≤ λn

(4.6)
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FASJEM: Variations

FASJEM-G:

R′(·) = || · ||G,2

||Ωtot ||G,2 =

p∑
j=1

p∑
k=1

||(Ω
(1)
j,k ,Ω

(2)
j,k , . . . ,Ω

(i)
j,k , . . . ,Ω

(K )
j,k )||2

(4.7)

FASJEM-I:

R′(·) = || · ||G,∞

||Ωtot ||G,∞ =

p∑
j=1

p∑
k=1

||(Ω
(1)
j,k ,Ω

(2)
j,k , . . . ,Ω

(i)
j,k , . . . ,Ω

(K )
j,k )||∞

(4.8)
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FASJEM: Optimization Solution

JGL solution:

FASJEM solution:
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FASJEM: Optimization Solution – Proximal algorithm

FASJEM solution:

In each iteration, a proximal operator
Element-wise operator, O(p2)

GPU-parallelizable O(1)
e.g., proximity of `1

proxγ||·||1(x)

=


x (i)

j,k − γ, x (i)
j,k > γ

0, |x (i)
j,k | ≤ γ

x (i)
j,k + γ, x (i)

j,k < −γ
(4.9)

=⇒
proxγ||·||1(x)

= max((x (i)
j,k − γ),0)

+ min(0, (x (i)
j,k + γ))

(4.10)
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FASJEM: Computational Complexity

The best
baseline of

Task I Task II Task III

Computational
complexity

O(Kp3) / iter O(K 4p5) O(p3) / iter

Bottle neck SVD
Linear
program-
ming

SVD

Our ap-
proach

FASJEM

Computational
complexity

O(Kp2) / iter

Parallelization O(K ) / iter
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Summary

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

Task I FASJEM || · ||1 +R′ Ωtot inv [Tv (Σ̂tot )] max(|| · ||∞,R′∗)
Task II
Task III
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Results: Theoretical Analysis

p′ = max(Kp,ntot )

Error Bound: ||Ω̂tot − Ω∗tot ||F ≤ 324κ1a
κ2

√
s log p′

ntot

Multi-task: K Single-task:
O( log(Kp)

ntot
) O( log p

ni
))

By assuming ni = ntot
K :

We can conclude that log(Kp)
ntot

< K log p
ntot

This indicates that the multi-task estimator is better!!!
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Results: Synthetic Data generation process
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Results: Synthetic Data Results
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Results: Real-world Data Results – Number of
Matched Edges versus the Existing Domain
Databases

Validation by counting the overlapped interactions according to the
existing bio-databases (MInact)
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Method II: JEEK
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Task II: Integrating additional knowledge

Integrating known knowledge in Learning multiple related graphs
E.g., known knowledge in Brain Connection
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

Integrating additional knowledge through a novel regularization
function R(·)

KW-norm

R({Ω(i)}) =
K∑

i=1

||W (i)
I ◦ Ω

(i)
I ||1 +

K∑
i=1

||WS ◦ ΩS||1 (5.1)

Ω(i) = Ω
(i)
I + ΩS

{W (i)
I }: weights describing knowledge of each individual graph.

WS: weights describing knowledge of the shared graph.
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Background: Shared and Task-Specific Subgraph
Representation

Know both
House keeping
interactions
Context-specific
networks
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

Use tot notation

KW-norm

R(Ωtot ) = ||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||1 (5.2)

W tot
I : weights describing knowledge of each individual graph.

W tot
S : weights describing knowledge of the shared graph.

No need to design knowledge-specific optimization
KW-norm is flexible.
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Example I: KW-norm representing the edge-level
knowledge

e.g., Spatial distance among brain regions;
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Example II: KW-norm describing the node-level
knowledge

e.g., X2 is a known hub node;
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Background: SIMULE

Decompose Ω(i) = Ω
(i)
I + ΩS

An `1 minimization approach

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K )
I , Ω̂S =

argmin
Ω

(i)
I ,ΩS

∑
i

||Ω(i)
I ||1 + εK ||ΩS||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I||∞ ≤ λn, i = 1, . . . ,K
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Background: WSIMULE: A weighted SIMULE
estimator

SIMULE

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K )
I , Ω̂S = argmin

Ω
(i)
I ,ΩS

∑
i

||Ω(i)
I ||1 + εK ||ΩS||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I||∞ ≤ λn, i = 1, . . . ,K

ADD W (i)
I ,WS ⇓

W-SIMULE

Ω̂
(1)
I , ..., Ω̂

(K )
I , Ω̂S =

∑
i

argmin
Ω

(i)
I ,ΩS

||W (i)
I ◦ Ω

(i)
I ||1 + K ||WS ◦ ΩS||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I||∞ ≤ λ, i = 1, ...,K .

(5.3)
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Proposed Method: Combine EE and KW-norm

Elementary Estimator

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn

(5.4)

+

KW-norm

R(Ωtot ) = ||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||1 (5.5)
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Proposed Method: Joint Elementary Estimator
incorporating additional Knowledge (JEEK)

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

JEEK kw-norm Ωtot inv [Tv (Σ̂tot )] kw-dual

JEEK

argmin
Ωtot

I ,Ωtot
S

||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||

Subject to: ||W tot
I ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

||W tot
S ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

Ωtot = Ωtot
S + Ωtot

I

(5.6)
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Proposed method: JEEK – Solution

Fast and Scalable solution2 – p2 small linear programming
subproblems with only K + 1 variables:

argmin
ai ,b

∑
i

|wiai |+ K |wsb|

Subject to: |ai + b − ci | ≤
λn

min(wi ,ws)
,

i = 1, . . . ,K

(5.7)

2ai := Ω
(i)
I j,k (the {j , k}-th entry of Ω(i))

b := ΩSj,k

ci = [Tv (Σ̂(i))]−1
j,k .

W (i)
j,k = wi and W S

j,k = ws.
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Why JEEK is better

Rich and flexible for integrating additional knowledge
e.g., spatial, anatomy, hub, pathway, location, known edges;

Parallelizable optimization with small sub-problems.
Theoretical guaranteed
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JEEK: Computational Complexity

The best
baseline of

Task I Task II Task III

Computational
complexity

O(Kp3) / iter O(K 4p5) O(p3) / iter

Bottle neck SVD
Linear
program-
ming

SVD

Our ap-
proach

FASJEM JEEK

Computational
complexity

O(Kp2) / iter O(K 4p2)

Parallelization O(K ) / iter O(K 4)
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Summary

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

Task I FASJEM || · ||1 +R′ Ωtot inv [Tv (Σ̂tot )] max(|| · ||∞,R′∗)
Task II JEEK kw-norm Ωtot inv [Tv (Σ̂tot )] kw-dual
Task III
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Theoretical Results

Sharp convergence rate as the state-of-art

||Ω̂tot − Ωtot∗||F ≤ 4
√

ki + ksλn

max(||W tot
I ◦ (Ω̂tot − Ωtot∗)||∞, ||W tot

S ◦ (Ω̂tot − Ωtot∗||∞) ≤ 2λn

||W tot
I ◦ (Ω̂tot

I − Ωtot
I
∗
)||1 + ||W tot

S ◦ (Ω̂tot
S − Ωtot

S
∗
)||1 ≤ 8(ki + ks)λn

(5.8)

Where a, c, κ1 and κ2 are constants

||Ω̂tot−Ωtot∗||F

≤
16κ1a max

j,k
(W tot

I j,k ,W
tot
S j,k )

κ2

√
(ki + ks) log(Kp)

ntot

(5.9)
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Empirical Results on Multiple Synthetic Datasets
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(a)AUC vs. p - [hub,K=2,n=p/2]
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(c)Time vs. p-[perturb,K=2,n=p/2]

JEEK
W-SIMULE
JGL-perturb

JEEK outperforms the speed of the state-of arts significantly
faster (∼ 5000× improvement);
JEEK obtains better AUC as the state-of-the-art;
JEEK obtains better AUC than JEEK-NK (no additional
knowledge).
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Empirical Results on Two Real-world Datasets
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(a). On real-world gene expression data about leukemia cells vs.
normal blood cells. Used multiple types of additional knowledge;
(b). On real-world Brain fMRI dataset: ABIDE. Using LDA as a
downstream classification for evaluating JEEK vs. baselines.

70 / 108



Method III: DIFFEE
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Takes III: Learning sparse changes between two
graphs

Each graph may be dense or sparse, differential net is sparse
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Proposed Method III: DIFFEE

Two cases : d (disease) & c (control)

argmin
θ
||θ||1

Subject to:

||θ − B∗(φ̂)||∞ ≤ λn

(6.1) ∆ = Ωd − Ωc
=⇒

argmin
∆
||∆||1

Subject to:

||∆− B∗(Σ̂d , Σ̂c)||∞ ≤ λn

(6.2)
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Proposed Method III: DIFFEE

Elementary Estimator (EE)

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn

(6.3)

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞
DIFFEE || · ||1 ∆

(
[Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1

)
|| · ||∞

DIFFEE

argmin
∆
||∆||1

Subject to: ||∆−
(

[Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1
)
||∞ ≤ λn

(6.4)
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DIFFEE: Optimization Solution

Close form
∆̂ = Sλn ([Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1) (6.5)

[Sλ(A)]ij = sign(Aij) max(|Aij | − λ,0) (6.6)

GPU-parallelizable
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DIFFEE: Computational Complexity

The best
baseline of

Task I Task II Task III

Computational
complexity

O(Kp3) / iter O(K 4p5) O(p3) / iter

Bottle neck SVD
Linear
program-
ming

SVD

Our ap-
proach

FASJEM JEEK DIFFEE

Computational
complexity

O(Kp2) / iter O(K 4p2) O(p3)

Parallelization O(K ) / iter O(K 4) O(p3)
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Summary

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

Task I FASJEM || · ||1 +R′ Ωtot inv [Tv (Σ̂tot )] max(|| · ||∞,R′∗)
Task II JEEK kw-norm Ωtot inv [Tv (Σ̂tot )] kw-dual

Task III DIFFEE || · ||1 ∆
[Tv (Σ̂d )]−1

−[Tv (Σ̂c)]−1 || · ||∞
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Results: Theoretical Analysis

Sharp convergence rate as the state-of-art

||∆̂−∆∗||∞ ≤
16κ1a
κ2

√
log p

min(nc ,nd )

||∆̂−∆∗||F ≤
32κ1a
κ2

√
k log p

min(nc ,nd )

||∆̂−∆∗||1 ≤
64κ1a
κ2

k

√
log p

min(nc ,nd )

(6.7)
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Results: Synthetic Data Results
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Results: Synthetic Data Results
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Results: Real-world Data Results

Apply to Brain image data (fMRI)
Use the estimated different network in LDA
Compare the accuracy with the state-of-art methods

Method DIFFEE FusedGLasso Diff-CLIME
Accuracy (%) 57.58% 56.90% 53.79%
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Discussion
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Support Analysis Results

DIFFEE as an example

Lemma

||∆∗ − B∗(Σ̂d , Σ̂c)||∞ ≤ λn (7.1)

⇓
Corollary

∆∗i,j = 0 =⇒ |B∗(Σ̂d , Σ̂c)i,j | ≤ λn (7.2)

∆̂ = Sλn (B∗(Σ̂d , Σ̂c)) (7.3)

Result

∆∗i,j = 0 =⇒ ∆̂i,j = 0 (7.4)

supp(∆̂) ⊆ supp(∆∗)
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Support Analysis Result

Additional Assumption:

Assumption

min
s∈supp(∆∗)

|∆∗s| ≥ 3||∆∗ − B∗(Σ̂d , Σ̂c)||∞ (7.5)

supp(∆∗) ⊆ supp(∆̂) (7.6)

Combine the above results

supp(∆∗) = supp(∆̂) (7.7)
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Standardized Covariance Matrices

Real world: Different tasks→ different value scale
e.g., fMRI vs RNA squencing

Problem: hard to choose λn in different scales

Solution: Covariance matrices =⇒ Correlation matrices

Theorem
The inverse of Correlation matrices have the same support set as the
inverse of covariance matrices

Nonparanormal extensions – Relax the Gaussian Assumption
Added in all the packages
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Iteration number T

linearly converge method: T = O(n log( 1
TOL))

TOL is the error bound

FASJEM error bound: O( log(Kp)
ntot

)

T = O( ntot log(ntot )
log(log(Kp)) )
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Trade-off

proxy backward mapping still O(p3)

In practice, fast in our three tasks
Thanks to excellent low-level implementation

Not well performed in low-dimensional case
p′ = max(n,p)
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Trade-off
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KW-norm for FASJEM

Revise the `1 norm in FASJEM to a KW-norm

KW-norm for FASJEM

R({Ω(i)}) =
K∑

i=1

||W (i) ◦ Ω(i)||1

= ||W tot ◦ Ωtot ||1

(7.8)

{W (i)}: weights describing knowledge of each graph.
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Future work: FASJEM with additional knowledge –
FASJEM-K

FASJEM-K

argmin
Ωtot

||Wtot ◦ Ωtot ||1 + εR′(Ωtot )

s.t .||Wtot ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

R′∗(Ωtot − inv(Tv (Σ̂tot ))) ≤ ελn

(7.9)
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KW-norm for Differential Network: kEV-norm

Integrating both edge-level and node-level additional knowledge
through a novel regularization function R(·)

kEV-norm

R(∆) = ||WE ◦∆E\GV
||1 + ε||∆GV ||GV ,2 (7.10)

GV is a node group.
WE represents the weights for edges.
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Future work: DIFFEE-K

Combine kEV-norm and Elementary Estimator

DIFFEE-K

argmin
∆
||WE ◦∆E\GV

||1 + ε||∆GV ||GV ,2

Subject to: ||WE ◦
(

∆−
(

[Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1
))
||∞ ≤ λn

ε||∆−
(

[Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1
)
||∗GV ,2 ≤ λn

(7.11)
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Publications

FASJEM
A Fast and Scalable Joint Estimator for Learning
Multiple Related Sparse Gaussian Graphical Models,
B Wang, J Gao, Y Qi, AISTATS 2017

DIFFEE
Fast and Scalable Learning of Sparse Changes in
High-Dimensional Gaussian Graphical Model
Structure, B Wang, A Sekhon, Y Qi, AISTATS 2018

W-SIMULE
A constrained` 1 minimization approach for
estimating multiple sparse Gaussian or
nonparanormal graphical models, B Wang, R Singh, Y Qi,
Machine Learning 106 (9-10), 1381-1417
A Constrained, Weighted-L1 Minimization Approach
for Joint Discovery of Heterogeneous Neural
Connectivity Graphs, C Singh, B Wang, Y Qi, Advances in
Modeling and Learning Interactions from Complex Data, NIPS 2017
Workshop
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Publications

JEEK
A Fast and Scalable Joint Estimator for
Integrating Additional Knowledge in Learning
Multiple Related Sparse Gaussian Graphical Models,
B Wang, A Sekhon, Y Qi, ICML 2018

DIFFEE-K
A Fast and Scalable Estimator for Using
Additional Knowledge in Learning Sparse Structure
Change of High-Dimensional Gaussian Graphical
Models, B Wang, A Sekhon, Y Qi, submit to NIPS 2018
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R Package is Available !!!

The project website: http://jointggm.org/

R package ”simule”:
install.packages("simule")
demo(simule) !

R package ”fasjem”:
install.packages("fasjem")
demo(fasjem) !

R package ”diffee”:
install.packages("diffee")
demo(diffee) !

R package ”jeek”:
install.packages("jeek")
demo(jeek) !

A complete package ”jointNet” will be ready by this summer.
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Back-up: Difficulty in combining FASJEM and JEEK

argmin
Ωtot

I ,Ωtot
S

||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||+ εR′(Ωtot )

Subject to: ||W tot
I ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

||W tot
S ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

R∗′(Ωtot ) ≤ ελn

(7.12)

Hard to optimize
Lose fast and scalable property
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Back-up: How to choose v in Tv (Σ̂)

line search
v from the set {0.001i |i = 1,2, . . . ,1000}
pick a value that makes Tv (Σ̂) and be invertible
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Back-up: Connecting to Bayesian Statistics

− log(P(Ω(i)|X (i), µ(i),W (i)
I j,k ,WSj,k ))

∝ − log(det(Ω(i)−1
))+ < Ω(i), Σ̂(i) >

+
∑
j,k

(W (i)
I j,k |Ω

(i)
I j,k |+ WS|ΩSj,k |)

(7.13)
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Back-up: Proximal algorithm Basics

proximity definition:
proxh(x) = argmin

u
(h(u) + 1

2 ||u − x ||22)

argmin
x

f (x) = g(x) + h(x)

proximal gradient descent:
x (k) = proxtk h(x (k−1) − tk 5 g(x (k−1)))

104 / 108



Back-up: Proximal algorithm for FASJEM
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Back-up: Proximal algorithm for FASJEM
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Notation
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Notation

P The probability measure.

Ω The sample space.

F The event set.

X ,Y ,Z The random variables.
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Probability
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Probability Space

Probability Space

Let (Ω,F ,P) be the probability space.

Ω be an arbitrary non-empty set.

F ⊂ 2Ω is a set of events.

P is the probability measure. In another word, a function : F → [0, 1].
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Events

F contains Ω.

F is closed under complements.

F is closed under countable unions.
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Probability Measure
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Random Variable

Random Variable

Let X : Ω→ R be a random variable. X is a measurable function.
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Random Variable
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Probability Distribution

Probability Distribution function

Let F (x) : R→ [0, 1] = P[X < x ] where x ∈ R.

X = Y , they follow same distribution?

FX = FY , then X = Y ?
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Joint Probability

Joint Probability

The probability distribution of random vector (X ,Y ).
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Joint Probability

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – I June 23rd, 2017 13 / 34



Marginal Probability

Marginal Probability

A pair of random variable (X ,Y ), the probability distribution of X .
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Joint Probability

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – I June 23rd, 2017 15 / 34



Conditional Distribution

Conditional Distribution

Given the information of Y , the probability distribution of X . Notation
X |Y .
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Joint Probability
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Relationship

Relationship

P(X = x ,Y = y) = P(Y = y)P(X = x |Y = y)
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Dependence and Correlation
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Independence

Independence

X and Y are independent if and only if pX ,Y (x , y) = pX (x)pY (y), where
p is the probability density function.

Independence

Y |X = Y

Filp coin example

Causal relationship
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Correlation

Covariance

Cov(X ,Y ) = E[(X − µX )(Y − µY )], where µX , µY is the mean vector.

Correlation

ρ(X ,Y ) = Cov(X ,Y )
σXσY

Linear relationship

Linear dependency between X and Y .

ρ(X ,Y ) = 1 means that X and Y are in the same linear direction
while ρ(X ,Y ) = −1 means that X and Y are in the reverse linear
direction.

ρ(X ,Y ) = 1 means that when X increase, Y increase with all the
points lying on the same line.

ρ(X ,Y ) = 0 means that X and Y are perpendicular with each other.
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Correlation
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Dependence and Correlation

Correlation is easy to estimate the value while independence is a
relationship to infer.

Dependence is stronger relationship than correlation.

In another word, if X and Y are independent, ρ(X ,Y ) = 0. However,
the reverse doesn’t hold.

For example, suppose the random variable X is symmetrically
distributed about zero and Y = X 2.
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Gaussian Example

The distribution of bivariate Gaussian is:

f (x , y) =
1

2πσXσY
√

1− ρ2
exp

(
− 1

2(1− ρ2)
∗
(

(x − µX )2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ(x − µX )(y − µY )

σXσY

))
(3.1)
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Gaussian Example

Suppose (X ,Y ) are uncorrelated. i.e.,(X ,Y ) ∼ N(0, diag(σ2
X , σ

2
Y )).

f (x , y) =
1

2πσXσY
exp(−1

2
(

(x − µX )2

σ2
X

+
(y − µY )2

σ2
Y

))

=
1√

2πσX
exp(−1

2

(x − µX )2

σ2
X

)
1√

2πσY
exp(−1

2

(y − µY )2

σ2
Y

)

= f (x)f (y)

(3.2)

Therefore, if (X ,Y ) follows bivariate Gaussian, (X ,Y ) are uncorrelated if
and only if (X ,Y ) are independent.
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Summary

Correlation is easy to estimate the value while independence is a
relationship to infer.

In the Gaussian Case, they are equivalent.

From the structure learning angle, dependence is about the causal
relationship, while correlation is, more specifically, the linear
relationship.
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Conditional Dependence and Partial Correlation
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Conditional Dependence

Let’s consider a more complicated case. There is another third random
variable Z . There are two ways to view the conditional dependence.

X and Y are independent conditional on Z

X |Z and Y |Z are independent

Conditional Dependence

X and Y are independent on Z if and only if
pX ,Y |Z (x , y) = pX |Z (x)pY |Z (y), where p is the probability density
function.
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Partial Correlation

Partial Correlation

Formally, the partial correlation between X and Y given random variable
Z , written ρXY ·Z , is the correlation between the residuals RX and RY

resulting from the linear regression of X with Z and of Y with Z ,
respectively.
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Partial Correlation
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Partial Correlation

Partial Correlation Calculation

Suppose P = Σ−1 (Σ is covariance matrix or Correlation matrix)
ρXiXj ·V\{Xi ,Xj} = − pij√

piipjj
.

The value is exactly related to the precision matrix (the inverse of
covariance matrix)!
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Conditional Dependence and Partial Correlation

Similarly, in the Gaussian Case, they are equivalent.

A detailed derivation is in the next talk.
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Gaussian Case

Partial Correlation is easy to estimate the value while conditional
independence is a relationship to infer.

Conditional Dependence is stronger relationship than partial
correlation.

In another word, if X |Z and Y |Z are independent, ρ(X ,Y · Z ) = 0.
However, the reverse doesn’t hold.
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Summary

Partial correlation is easy to estimate the value while conditional
independence is a relationship to infer.

In the Gaussian Case, they are equivalent.

From the structure learning angle, conditional dependence is about
the causal relationship, while partial correlation is, more specifically,
the linear relationship.
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Notation
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Notation

Σ The covariance matrix.

Ω The precision matrix.

µ The mean vector.

xi The i-th sample follows multivariate normal distribution.
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Reviews
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Reviews

Probability basics

Dependency vs. Correlation

Conditional dependency vs. partial Correlation
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Summary from last talk

Partial correlation is easy to estimate the value while conditional
independence is a relationship to infer.

In the Gaussian Case, they are equivalent.

From the structure learning angle, conditional dependence is about
the causal relationship, while partial correlation is, more specifically,
the linear relationship.

So the remaining question is why in the Gaussian case they are equivalent
and how to infer this relationship.
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Review: Gaussian Example

Suppose (X ,Y ) are uncorrelated. i.e.,(X ,Y ) ∼ N(0, diag(σ2X , σ
2
Y )).

f (x , y) =
1

2πσXσY
exp(−1

2
(

(x − µX )2

σ2X
+

(y − µY )2

σ2Y
))

=
1√

2πσX
exp(−1

2

(x − µX )2

σ2X
)

1√
2πσY

exp(−1

2

(y − µY )2

σ2Y
)

= f (x)f (y)

(2.1)

Therefore, if (X ,Y ) follows bivariate Gaussian, (X ,Y ) are uncorrelated if
and only if (X ,Y ) are independent.
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Why partial correlation and condition dependence are
equivalent in the Gaussian case?
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Multivariate Gaussian Distribution

Density function

Let X ∼ N(µ,Σ). f (x) = (2π)−
p
2 det(Σ)−

1
2 exp(−1

2(x − µ)TΣ−1(x − µ))
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Partition X , µ, and Σ

Partition X , µ, Σ, Ω.

µ =

[
µ1
µ2

]

Σ =

[
Σ11 Σ12

Σ21 Σ22

]

Ω = Σ−1 =

[
Ω11 Ω12

Ω21 Ω22

]
X =

[
X1

X2

]
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Conditional Distribution of Multivariate Gaussian

If X ∼ N(µ,Σ), it holds that X2 ∼ N(µ2,Σ22).
If Σ22 is regular, it further holds that

X1|(X2 = a) ∼ N(µ1|2,Σ1|2)

where µ1|2 = µ1 + Σ12Σ−122 (a− µ2) , and

Σ1|2 = Σ11 − Σ12Σ−122 Σ21 = (Ω11)−1.
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Partial correlation and condition dependence are equivalent
in the Gaussian case

X1|X2 = a ∼ N(µ1|2, (Ω11)−1),
If X1 only contains xi and xj , then xi and xj are conditional independent
on others iff Ωij = 0.
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Estimate the condition dependence graph/Partial
correlation

Now the only thing left is to estimate Ω = Σ−1. There are three potential
ways to do that. We call this problem as Gaussian Graphical model.

Directly calculate the inverse of the sample covariance matrix Σ̂.
However, we cannot do that when the sample covariance matrix is
not invertible.

Maximum Likelihood Method

Regression method

For the first one, the sample covariance matrix Σ̂ may not be invertible.

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – II June 30th, 2017 14 / 26



Maximum Likelihood Method
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The MLE of µ

L(µ,Ω) = (2π)−
np
2
∏n

i=1 det(Ω−1)−
1
2 exp

(
−1

2(xi − µ)TΩ(xi − µ)
)
.

After take a first derivative, it is easy to show that x̄ = x1+···+xn
n

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – II June 30th, 2017 16 / 26



The Likelihood of Ω

L(x̄ ,Ω) = (2π)−
np
2
∏n

i=1 det(Ω−1)−
1
2 exp

(
−1

2(xi − x̄)TΩ(xi − x̄)
)
.

Notice that (xi − x̄)TΩ(xi − x̄) is a scalar. Therefore,
(xi − x̄)TΩ(xi − x̄) = trace((xi − x̄)TΩ(xi − x̄)).
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The Likelihood of Ω

Since tr(A,B) = tr(B,A).

L(x̄ ,Ω) ∝ det(Ω−1)−
n
2 exp

(
−1

2

n∑
i=1

tr
(

(xi − x̄)T Ω (xi − x̄)
))

(4.1)

= det(Ω−1)−
n
2 exp

(
−1

2

n∑
i=1

tr
(

(xi − x̄) (xi − x̄)T Ω
))

(4.2)

= det(Ω−1)−
n
2 exp

(
−1

2
tr

(
n∑

i=1

(xi − x̄) (xi − x̄)T Ω

))
(4.3)

= det(Ω−1)−
n
2 exp

(
−1

2
tr (SΩ)

)
(4.4)

where, S =
n∑

i=1
(xi − x̄)(xi − x̄)T ∈ Rp×p.
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The Log-Likelihood of Ω

lnL(x̄ ,Ω) = const− n
2 ln det(Ω−1)− 1

2 tr

(
Ω

n∑
i=1

(x̄ − µ)(x̄ − µ)T
)
.

Since det(A−1) = 1/ det(A),

lnL(x̄ ,Ω) ∝ ln det(Ω)− tr

(
Ω

1

n

n∑
i=1

(x̄ − µ)(x̄ − µ)T

)
(4.5)

= ln det(Ω)− tr
(

ΩŜ
)

(4.6)

where Ŝ is the sample covariance matrix.

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – II June 30th, 2017 19 / 26



Regression Method
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Partial Correlation
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Partial correlation

As we know, the partial correlation can also be solved by the linear
regression.

In the Gaussian case, we can use so-called neighborhood approach.
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Conditional Distribution of Multivariate Gaussian

If X ∼ N(µ,Σ), it holds that X2 ∼ N(µ2,Σ22).
If Σ22 is regular, it further holds that

X1|X2 = a ∼ N(µ1|2,Σ1|2)

where µ1|2 = µ1 + Σ12Σ−122 (a− µ2) , and

Σ1|2 = Σ11 − Σ12Σ−122 Σ21 = (Ω11)−1.
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Neighborhood approach

If X ∼ N(0,Σ) and let X1 = Xj .
Xj |X\j N(Σ\j ,jΣ

−1
\j ,\jX\j ,Σjj − Σ\j ,jΣ

−1
\j ,\jΣ\j ,j)

Let αj := Σ\j ,jΣ
−1
\j ,\j and σ2j := Σjj − Σ\j ,jΣ

−1
\j ,\jΣ\j ,j . We have that

Xj = αT
j X\j + εj (5.1)

where εj ∼ N(0, σ2j ) is independent of X\j .
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Neighborhood approach

We can estimate the αj by solving p simple linear regression.

if i-th entry of αj equals to 0, it means that Xi and Xj are partial
uncorrelated and conditional independent.

Perhaps we want more assumption on αj like sparsity.

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – II June 30th, 2017 25 / 26



Summary

In Gaussian case, the partial correlation and the conditional
dependence are equivalent

We have two ways to estimate them. First, directly estimate the
precision matrix by MLE. Second, solve p linear regression problem by
neighborhood approach.

None of them have any assumptions on the partial correlation
coefficient.

In the next talk, let’s introduce the solutions of these two estimators.
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Road Map
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Review: Gaussian Case

In the Gaussian case, we know the conditional dependence and partial
correlation are equivalent.

This pairwise relationship can be naturally represented by a graph
G = (V ,E ).

|Ω| > 0 is a natural adjacency matrix.

We call the pairwise conditional dependence relationship among
variables as undirected Graphical Model.
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Why we need Graphical Model?

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – III July 7th, 2017 6 / 25



A Toy Example
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A Toy Example

Suppose X = (X1,X2,X3,X4,X5,X6). Each variable only takes either 0 or
1. To estimate the joint probability p(X ), you need to estimate 26 values.
However, if we know the conditional independence graph,
p(X ) = p(X1,X2,X3)p(X4,X5,X6). You only need to estimate 24 values.
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Proof of the decomposition

First, let’s prove that if X1 ⊥⊥ X3|X2, then p(X1|X3,X2) = p(X1|X2).
p(X1|X2)p(X3|X2) = p(X1,X3|X2) = p(X1|X3,X2)p(X3|X2). Cancel out
p(X3|X2) in the both sides, we can have the conclusion.
It is easy to obtain the similar result under the local markov property:
p(Xv |Xv\N(v),XN(v)) = p(Xv |XN(v)).
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Proof of the decomposition

p(X1,X2,X3,X4,X5,X6) = p(X1|X2,X3,X4,X5,X6)p(X2|X3,X4,X5,X6)p(X3|X4,X5,X6)p(X4,X5,X6)

By the conclusion we have in the last page, the left equals to

p(X1|X2,X3)p(X2|X3)p(X3)p(X4,X5,X6) (1.1)

=p(X1,X2,X3)p(X4,X5,X6) (1.2)
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Graphical Model
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Graphical Model

Probability Inference: estimate joint probability, marginal
probability, and conditional probability.

Structure learning: Give dataset X, learn the Graph structure from
X (i.e., learn the edge patterns between variables).
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A Toy Example
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Probability Inference: Calculate the joint Probability

You know that p(X ) = p(X1,X2,X3)p(X4,X5,X6). Traditionally,
p(X1,X2 = a) =

∑
X3,X4,X5,X6

p(X1,X2 = a,X3,X4,X5,X6).

16 operators.
By the graph, we can have
p(X1,X2 = a) =

∑
X3

p(X1,X2 = a,X3)
∑

X4,X5,X6

p(X4,X5,X6).

10 operators.
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Markov Random Field

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – III July 7th, 2017 16 / 25



Markov Random Field

Markov Random Field

Given an undirected graph G = (V ,E ), a set of random variables
X = (Xv )v∈V indexed by V form a Markov random field with respect to G
if they satisfy the local Markov property:
A variable is conditionally independent of all other variables given its
neighbors: Xv ⊥⊥ XV \N(v)|XN(v)

This property is stronger than the pairwise Markov property:
Any two non-adjacent variables are conditionally independent given all
other variables: Xu ⊥⊥ Xv | XV \{u,v} if {u, v} /∈ E .

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – III July 7th, 2017 17 / 25



A Toy Example
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Clique factorization

If this joint density can be factorized over the cliques of G :

p(X = x) =
∏

C∈cl(G)

φC (xC )

then X forms a Markov random field with respect to G . Here, cl(G ) is the
set of cliques of G .
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A Toy Example
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Log-linear Model

Any Markov random field can be written as log-linear model with feature
functions fk such that the full-joint distribution can be written as:

P(X = x) =
1

Z
exp

(∑
k

w>k fk(X )

)

. Notice that the reverse doesn’t hold.
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Example I: Pairwise Model

Pairwise Model

P(X = x) =
1

Z (Θ)
exp

∑
s∈V

θ>s x
2
s +

∑
(s,t)∈E

θ>stxsxt


.

Examples:

Gaussian Graphical Model

Ising Model

These two models have good estimators to infer the MRF. Generally,
estimate Θ is difficult. Since it involves computing Z (Θ) or its derivatives.
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Example I: Pairwise Model – Gaussian Case

Gaussian Case

f (x1, . . . , xk) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)√

(2π)k |Σ|
.

Solution:

lnL(x̄ ,Ω) ∝ ln det(Ω)− tr

(
Ω

1

n

n∑
i=1

(x̄ − µ)(x̄ − µ)T

)
(3.1)

= ln det(Ω)− tr
(

ΩŜ
)

(3.2)

where Ŝ is the sample covariance matrix.
For the Ising model, we use generalized covariance matrix to avoid the
normalization term.
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Example II: Non-pairwise model – Nonparanormal
Graphical Model

Are there any non-pairwise model which is easy to estimate?

Nonparanormal Graphical Model

P(X = x) =
1

Z
exp

(
−1

2
(f (x)− µ)TΣ−1(f (x)− µ)

)
.

where f (X ) = (f1(X1), f2(X2), . . . fp(Xp)) and each fi is a univariate
monotone function. f (X ) ∼ N(µ,Σ).

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – III July 7th, 2017 24 / 25



Summary

The formal definition of Markov Random Field (undirected Graphical
Model)

General formulation: Clique factorization

log-linear Model

Two examples: pairwise model and nonparanormal Graphical Model.

In the next talk, let’s introduce the solutions of these two estimators
for sGGM.
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Notation

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – IV July 21st, 2017 4 / 30



Notation

L The loss function.

R The Regularization function (norm).

R∗ The Dual norm of R.
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Review
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Review from last talk

Likelihood of the precision matrix in the Gaussian case

Graphical Model Basics
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Regularized M-estimator
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Example
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Regularized M-estimator

M-estimator

In statistics, M-estimators are a broad class of estimators, which are
obtained as the minima of sums of functions of the data.
The parameters are estimated by argmin the sums of functions of the data.

target

L(X , θ) the loss function

Conditions

R(θ) the Regularization function

Therefore, the whole objective function is:

argmin
θ
L(X , θ) + λnR(θ) (3.1)
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Example: Linear Model

Let’s use the linear regression model as an example.

Target

Find β, such that Xβ = y .

Constrains: Sparsity

Prediction Accuracy: Sacrifice a little bias and reduce the variance.
Improve the overall performance.

Interpretation: With a large number of predictors, we often would
like to determine a smaller subset that exhibits the strongest effect.

argmin
β
||y − Xβ||2 (3.2)

Subject to: ||β||0 ≤ t (3.3)
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Example: Lasso

Since `0-norm is not a convex function, we need the closest convex
function of `0-norm.

argmin
β
||y − Xβ||2 (3.4)

Subject to: ||β||1 ≤ t (3.5)

Lasso

argmin
β
||y − Xβ||2 + λn||β||1
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Other equivalent formulation

argmin
β
||β||1 (3.6)

Subject to: y = Xβ (3.7)

Dantzig selector

argmin
β
||β||1 (3.8)

Subject to: ||XT (Xβ − y)||∞ ≤ λn (3.9)
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A unified framework
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Three major Criteria
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Three major Criteria

Statistical Convergence Rate: How close is between your estimated
parameter and the true parameter. It corresponds to estimation error
and approximation error.

Computational Complexity: How fast the algorithm is with respect to
certain parameters, e.g., n and p.

Optimization Rate of Convergence: How fast each optimization step
move to the estimated parameter, such as linear or quadratic.

Traditional statisticians focus on the statistical convergence rate
(Accuracy).
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High dimension vs low dimension

low dimension: when n is large, the error is asymptotic 0 by the law
of large number.

high dimension (i.e.,p/n→ c 6= 0): the error is not asymptotic 0.

High dimensional analysis is relative hard. Traditionally, we need carefully
proof for every estimator.
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Three major Criteria
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A unified framework for M-estimator
[Negahban et al.(2009)Negahban, Yu, Wainwright, and Ravikumar]

Decomposability of R
Suppose a subspace M⊂ Rp, a norm-based regularizer R is
decomposable with respect to (M,M̄⊥) if

R(θ + γ) = R(θ) +R(γ)

for all θ ∈M and γ ∈ M̄⊥, where
M̄⊥ := {v ∈ Rp| < u, v >= 0∀u ∈ M̄}.

Subspace compatibility constant

Φ(M) := sup
u∈M\{0}

R(u)

||u||

with respect to the pair (R, || · ||).

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – IV July 21st, 2017 19 / 30



A unified framework for M-estimator
[Negahban et al.(2009)Negahban, Yu, Wainwright, and Ravikumar]

Example: `1

`1 is decomposable and the Φ(M) =
√
s with respect to (`1, `2).
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A unified framework for M-estimator
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Example: Lasso

||θ̂λn − θ∗||22 ≤ O(
s log p

n
)

In high dimensional setting, the sparsity assumption actually improves the
convergence rate a lot.
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Elementary Estimator
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We have a very powerful tool to easily prove the convergence rate. We can
also follow the similar process to prove the convergence rate for estimators
like Dantzig Selector.
However, a lot of statistical method is slow when p and n are large and
they are not scalable at all.
Are there any estimators with close form solution for the statistic problem,
which also achieve the optimal convergence rate?
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Three major Criteria
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Three major Criteria

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – IV July 21st, 2017 26 / 30



Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

argmin
θ
R(θ) (5.1)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn (5.2)

Here B∗(φ̂) is a backward mapping for φ̂.
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin
θ
||θ||1 (5.3)

Subject to: ||θ − (XTX + εI )−1XT y ||∞ ≤ λn (5.4)
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Summary

We review the unified framework for M-estimator, which can be
applied to most regularized M-estimator problem

Following the similar proof strategy, we have the set of elementary
estimators.
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Notation
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Notation

Σ The covariance matrix.

Ω The precision matrix.

p The number of features.

n The number of samples.
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Review from last talk

Regularized M-estimator argmin
θ
L(θ) + λnR(θ)

a unified framework to analyze the statistical convergence rate for
high-dimensional statistics

Elementary Estimator
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Review of Gaussian Graphical Model

Suppose the precision matrix Ω = Σ−1.

The log-likelihood of Ω equals to ln det(Ω)− tr
(

ΩŜ
)

In this talk, we will use this likelihood to derive several estimators of sparse
Gaussian Graphical Model (sGGM)

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Series – V July 28th, 2017 8 / 29



Neighborhood Method
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Neighborhood approach

If X ∼ N(0,Σ) and let X1 = Xj .
Xj |X\j N(Σ\j ,j Σ

−1
\j ,\jX\j ,Σjj − Σ\j ,j Σ

−1
\j ,\j Σ\j ,j )

Let αj := Σ\j ,j Σ
−1
\j ,\j and σ2

j := Σjj − Σ\j ,j Σ
−1
\j ,\j Σ\j ,j . We have that

Xj = αT
j X,\j + εj (3.1)

where εj ∼ N(0, σ2
j ) is independent of X,\j .
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Neighborhood approach with sparse assumption

By the sparse assumption, we estimate each αj by a lasso estimator

αj = argmin
αj

||αT
j X,\j − Xj ||22 + λ||αj ||1 (3.2)
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Review of Lasso solution

Lasso

β = argmin
β
||βTX − y ||22 + λ||β||1 (3.3)

subgradient method

g(β;λ) = −2XT (y − Xβ) + λsgn(β) (3.4)
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Review of Lasso solution: State of the Art

We see that the proximity operator is important because x∗ is a minimizer
to the problem minx∈H F (x) + R(x) if and only if
x∗ = proxγR (x∗ − γ∇F (x∗)), where γ > 0. γ is any positive real number.

Proximal gradient method

(
proxγR(x)

)
i

=


xi − γ, xi > γ

0, |xi | ≤ γ
xi + γ, xi < −γ,

(3.5)

By using the fixed point method, you can obtain the estimation of β.
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Graphical Lasso
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Graphical
Lasso[Friedman et al.(2008)Friedman, Hastie, and Tibshirani]

We already have the log-likelihood as the loss function. Can we use it to
obtain a similar estimator as Lasso?

argmin
Ω
− ln det(Ω) + tr

(
ΩŜ
)

+ λn||Ω||1 (4.1)
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Proximal gradient method to solve it

Let’s do a practice in the white board.

Super Linear algorithm.

limk→∞
|xk+1−x∗|
|xk−x∗| = 0.
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State of the art method: Big &
QUIC[Hsieh et al.(2011)Hsieh, Sustik, Dhillon, and Ravikumar]

Parallelized Coordinate descent.

approximated quadratic algorithm.

limk→∞
|xk+1−x∗|
|xk−x∗|2 < M
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CLIME
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CLIME[Cai et al.(2011)Cai, Liu, and Luo]

CLIME

argmin
Ω
||Ω||1 , subject to: ||ΣΩ− I ||∞ ≤ λ (5.1)

Here λ > 0 is the tuning parameter.
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By taking the first derivative of Eq. (4.1) and setting it equal to zero, the
solution Ω̂glasso also satisfies:

Ω̂−1
glasso − Σ̂ = λẐ (5.2)

where Ẑ is an element of the subdifferential ∂||Ω̂glasso ||1.
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Column-wise estimator

argmin ||β||1 subject to ||Σβ − ej ||∞ ≤ λ

CLIME can be estimated column-by-column.
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Elementary Estimator for Gaussian Graphical Model
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Elementary Estimator
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

argmin
θ
R(θ) (6.1)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn (6.2)

Here B∗(φ̂) is a backward mapping for φ̂.
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin
θ
||θ||1 (6.3)

Subject to: ||θ − (XTX + εI )−1XT y ||∞ ≤ λn (6.4)
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Elementary Estimator for sGGM

argmin
Ω
|Ω|1,off

subject to:|Ω− [Tv (Σ)]−1|∞,off ≤ λn

(6.5)

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Series – V July 28th, 2017 26 / 29



Summary

We review most sGGM estimators.
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Notation

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Series – VI August 4th, 2017 4 / 28



Notation

X (i) The i-th data matrix

Σ(i) The i-th covariance matrix.

Ω(i) The i-th precision matrix.

p The number of features.

ni The number of samples in the i-th data matrix.

K The number of tasks.
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Review
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Review from last talk

We introduce four estimators of sparse Gaussian Graphical Model.

We finish most contents about sparse Gaussian Graphical Model in
the last five talks.
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Review of Gaussian Graphical Model

Suppose the precision matrix Ω = Σ−1.

The log-likelihood of Ω equals to ln det(Ω)− tr
(

ΩŜ
)
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Multi-task Learning
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Multi-task Learning

Multi-task Learning

Multi-task learning (MTL) is a subfield of machine learning in which
multiple learning tasks are solved at the same time, while exploiting
commonalities and differences across tasks.
This can result in improved learning efficiency and prediction accuracy for
the task-specific models, when compared to training the models separately.
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Multi-task Learning
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Multi-task Learning–Linear Classifier Example

Linear Classifier

f (x) = sgn(wT x + b) (3.1)

Multi-task Linear Classifiers

For the i-th task,
fi (x) = sgn((wT

S + wT
i )x + b) (3.2)

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Series – VI August 4th, 2017 12 / 28



Multi-task sGGMs
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Multi-task sGGMs

Problem

Input: {X (i)}
Output: {Ω(i)}
Assumption I: Sparsity

Assumption II: Commonalities and Differences
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Multi-task sGGMs

Likelihood ∑
i

ni (ln det(Ω(i))− tr
(

Ω(i)Ŝ (i)
)

) (4.1)

Likelihood with sparsity assumption

∑
i

ni (ln det(Ω(i))− tr
(

Ω(i)Ŝ (i)
)

) (4.2)

Subject to: ||Ω(i)||1 ≤ t (4.3)
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Multi-task sGGMs

Likelihood with multi-task setting

∑
i

ni (ln det(Ω(i))− tr
(

Ω(i)Ŝ (i)
)

) (4.4)

Subject to: ||Ω(i)||1 ≤ t (4.5)

P(Ω(1),Ω(2), . . . ,Ω(K)) ≤ t2 (4.6)

Joint Graphical Lasso
[Danaher et al.(2013)Danaher, Wang, and Witten]

−
∑
i

ni (ln det(Ω(i))+tr
(

Ω(i)Ŝ (i)
)

)+λ1||Ω(i)||1+λ2P(Ω(1),Ω(2), . . . ,Ω(K))

(4.7)
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Optimization Challenge of Multi-task sGGMs
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General formulation

Likelihood with multi-task setting

−
∑
i

ni (ln det(Ω(i)) + tr
(

Ω(i)Ŝ (i)
)

) (5.1)

Subject to: ||Ω(i)||1 ≤ t (5.2)

P(Ω(1),Ω(2), . . . ,Ω(K)) ≤ t2 (5.3)

General formulation

∑
x ,z

f (x) + g(z) (5.4)

Subject to: Ax + Bz = c (5.5)
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Optimization Challenge
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Solution–Distributed optimization
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Optimization Challenges

For K > 2 tasks, you need carefully derive the whole optimization
solution.

Each step in each iteration is still a sub-optimization problem.
Sometimes, it is already difficult to solve.

This method is at most linear Convergence.
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Joint Graphical Lasso Example
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JGL-group Lasso example
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JGL solution – updating Θ(i)

Set the gradient to be 0, we can get the SVD part of the solution.
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JGL solution – updating Z (i)
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An example for difficulty of ADMM
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Summary

We introduce the multi-task sGGMs problem.

We introduce the challenges of the optimization for this problem.

We introduce the ADMM method and its drawbacks.
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Notation
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Notation

X (i) The i-th data matrix

Σ(i) The i-th covariance matrix.

Ω(i) The i-th precision matrix.

p The number of features.

ni The number of samples in the i-th data matrix.

K The number of tasks.
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Review
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Review from last talk

We introduce multi-task learning sparse Gaussian Graphical Models
(sGGMs).

We introduce the optimization chanllenges in the multi-task sGGMs.

We introduce the ADMM method and the solution of Joint Graphical
Lasso.
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Review of Gaussian Graphical Model

Suppose the precision matrix Ω = Σ−1.

The log-likelihood of Ω equals to ln det(Ω)− tr
(

ΩŜ
)
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Multi-task Learning
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Multi-task Learning

Multi-task Learning

Multi-task learning (MTL) is a subfield of machine learning in which
multiple learning tasks are solved at the same time, while exploiting
commonalities and differences across tasks.
This can result in improved learning efficiency and prediction accuracy for
the task-specific models, when compared to training the models separately.
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Multi-task Learning
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Multi-task Learning–Linear Classifier Example

Linear Classifier

f (x) = sgn(wT x + b) (3.1)

Multi-task Linear Classifiers

For the i-th task,
fi (x) = sgn((wT

S + wT
i )x + b) (3.2)

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Series – VII August 18th, 2017 12 / 33



Multi-task sGGMs
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Multi-task sGGMs

Problem

Input: {X (i)}
Output: {Ω(i)}
Assumption I: Sparsity

Assumption II: Commonalities and Differences
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Multi-task sGGMs

Likelihood ∑
i

ni (ln det(Ω(i))− tr
(

Ω(i)Ŝ (i)
)

) (4.1)

Likelihood with sparsity assumption

argmax
Ω(i)

∑
i

ni (ln det(Ω(i))− tr
(

Ω(i)Ŝ (i)
)

) (4.2)

Subject to: ||Ω(i)||1 ≤ t (4.3)
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Multi-task sGGMs

Likelihood with multi-task setting

argmax
Ω(i)

∑
i

ni (ln det(Ω(i))− tr
(

Ω(i)Ŝ (i)
)

) (4.4)

Subject to: ||Ω(i)||1 ≤ t (4.5)

P(Ω(1),Ω(2), . . . ,Ω(K)) ≤ t2 (4.6)

Joint Graphical Lasso
[Danaher et al.(2013)Danaher, Wang, and Witten]

argmin
Ω(i)

−
∑
i

ni (ln det(Ω(i))+tr
(

Ω(i)Ŝ (i)
)

)+λ1||Ω(i)||1+λ2P(Ω(1),Ω(2), . . . ,Ω(K))

(4.7)
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Multi-task sGGMs estimators
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Multi-task sGGMs estimators

Joint Graphical Lasso type estimators

Directly learn the commonalities and differences among tasks

Directly learn the differences between case and control
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Joint Graphical Lasso estimators

Different Joint Graphical Lasso

In the end, different multi-task sGGMs estimators choose different
P(Ω(1),Ω(2), . . . ,Ω(K)).

Solutions

Most methods use ADMM as the solution of the estimators.
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JGL:Problem

Input: {X (i)}
Output: {Ω(i)}
Assumption I: Sparsity

Assumption II: Commonalities and Differences
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Multi-task sGGMs estimators

Group Lasso[Danaher et al.(2013)Danaher, Wang, and Witten]

P(Ω(1),Ω(2), . . . ,Ω(K)) = ||Ω(1),Ω(2), . . . ,Ω(K)||G,2.

SIMONE[Chiquet et al.(2011)Chiquet, Grandvalet, and Ambroise]

P(Ω(1),Ω(2), . . . ,Ω(K)) =
∑
i 6=j

((
T∑

k=1

(Ω
(k)
ij )2

+))
1
2 + ((

K∑
k=1

(−Ω
(k)
ij )2

+))
1
2 .

Node
JGL[Mohan et al.(2013)Mohan, London, Fazel, Lee, and Witten]

P(Ω(1),Ω(2), . . . ,Ω(K)) =
∑

ij ,i>j
RCON(Ω(i) − Ω(j)).
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Node
JGL[Mohan et al.(2013)Mohan, London, Fazel, Lee, and Witten]
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Directly learn the commonalities and differences among tasks:
Problem

Input: {X (i)}
Output: {Ω(i)

I ,ΩS}
Assumption I: Sparsity

Assumption II: Commonalities and Differences
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Multi-task sGGMs estimators – Direct modeling

The second penalty function is still an indirect way to model the
commonality and differences among tasks. Some works try to directly
model this relationship.

Mixed Neighborhood Selection
(MSN)[Monti et al.(2015)Monti, Anagnostopoulos, and Montana]

the neighborhood edges of a given node v in the i-task is modeled as
βv + b̃(i),v . Here b̃(i),v ∼ N(0,Φv ).

Consider the CLIME estimator, we can directly model the graphs as the
sum of commonality and differences

SIMULE

Ω(i) = εΩS + Ω
(i)
I .
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Direct modeling commonalities and differences – SIMULE

SIMULE

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K)
I , Ω̂S = argmin

Ω
(i)
I ,ΩS

∑
i

||Ω(i)
I ||1 + εK ||ΩS ||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I ||∞ ≤ λn, i = 1, . . . ,K
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Multi-task sGGMs estimators – Direct modeling the differential
networks: Problem

Input: {X (i)}
Output: {∆}
Assumption I: Sparse Differential networks
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Multi-task sGGMs estimators – Direct modeling the
differential networks I

Fused GLasso

By adding a regularization to enforce the sparsity of ∆ = Ωc − Ωd , we
have the following formulation:

argmin
Ωc ,Ωd�0,∆

L(Ωc) + L(Ωd)λn(||Ωc ||1 + ||Ωd ||1) + λ2||∆||1 (5.1)

The Fused Lasso assumes Ωcase ,Ωcontrol ,∆. However, many real world
applications, like brain imaging data, only assume the differential network
∆ is sparse.
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Direct modeling the differential networks II: Differential
CLIME

A recent study proposes the following model, which only assume the
sparsity of ∆.

Differential CLIME

argmin
∆

||∆||1

Subject to: ||Σ̂c∆Σ̂d − (Σ̂c − Σ̂d)||∞ ≤ λn
(5.2)

However, this method is solved by a linear programming. It has p2

variables in this method. Therefore, the time complexity is at least O(p8).
In practice, it takes more than 2 days to finish running the method when
p = 120.
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Direct modeling the differential networks III: Density Ratio

The above methods all make the Gaussian assumption. This method
relaxes the model to the exponential family distribution.

Density Ratio

pc(x , θc)

pd(x , θd)
∝ exp(

∑
t

∆t ft(x)) (5.3)

Here ∆t encodes the difference between two Networks for factor ft .

Density Ratio

r(x ; θ) =
1

N(θ)
exp(

∑
t

∆t ft(x)) (5.4)

Here ∆t encodes the difference between two Networks for factor ft . N(θ)
is a normalization term.
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Direct modeling the differential networks III: Density Ratio

Density Ratio for Markov Random Field

p̂(x) = pd(x)r(x ; θ)

KL[pc ||p̂] = Const.−
∫

pc(x) log r(x ; θ)dx .
(5.5)
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Summary

We introduce the multi-task sGGMs estimators.

We introduce the multi-task sGGMs estimators, which directly model
the commonalities and differences.

We introduce the multi-task sGGMs estimators, which directly model
the differences.
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Notation
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Notation

X The data matrix

Σ The covariance matrix.

Ω The precision matrix.

p The number of features.

n The number of samples in the data matrix.

s The number of non-zero entries in the precision matrix.
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Review
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Review from last talk

We introduce different sGGM estimators and their solution.

We briefly introduce the three metrics used in evaluating an estimator.

We introduce different multi-task sGGMs estimators and their
optimization challenges.
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The metrics for evaluating an estimator
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Motivation I: Select a proper estimator

There may be a lot of similar estimators.

You need to decide which one to use.

You need some metrics to make the decision.
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Motivation II: Evaluate a novel method

You may come out a new estimator.

You want to know whether this novel estimator is no worse than the
previous ones.

Then you need some metrics to evaluate the estimator.
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Motivation II: Evaluate a novel method

You may come out a new estimator.

You want to know whether this novel estimator is no worse than the
previous ones.

Then you need some metrics to evaluate the estimator.
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Background: Two major properties

Two major properties: Accuracy and Speed.

Accuracy:
I Statistical Convergence rate
I how close to the Truth
I Statisticians

Speed:
I Optimization convergence rate
I Optimization researchers
I Computational complexity
I Computer Scientists
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Overview Figure
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Statistical Convergence Rate
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Statistical Convergence Rate : Definition

The task for an estimator is parameter estimation.

Suppose the parameter you need to estimate is θ, the truth is θ∗

‖ θ − θ∗ ‖ or R(θ − θ∗)
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A simple example: Estimate the mean

On the whiteboard.
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

argmin
θ
R(θ) (4.1)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn (4.2)

Here B∗(φ̂) is a backward mapping for φ̂.
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin
θ
||θ||1 (4.3)

Subject to: ||θ − (XTX + εI )−1XT y ||∞ ≤ λn (4.4)
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Hands on: Elementary Estimator for high-dimensional
linear regression

On the whiteboard.
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Hands on: DIFFEE

On the whiteboard.
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Conclusions

In high-dimensional setting, related to log p
n .

Equivalent estimators still have differences in constants or constraints
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Optimization Convergence Rate
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Optimization Convergence Rate : Definition

Linearly Converge: lim
k→∞

|θk+1−L|
|θk−L| = µk

I Linearly, if µk ∈ (0, 1)
I Superlinearly, if µk → 0 when k →∞.
I Sublinearly, if µk → 1 when k →∞

Higher order: lim
k→∞

|xk+1−L|
|xk−L|q > 0.

Closed form solution

Closed form ≥ Higher order ≥ linear
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Optimization Convergence Rate: Basic Results

Gradient Descent based method: Linear

I gradient descent
I SGD
I ADMM / proximal gradient descent

Newton method based method: Quadratic

Elementary Estimator: Closed form solution
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Optimization Convergence Rate: Different methods

Single sGGM Multiple sGGMs Differential Network

Method: GLasso CLIME EEGM JGL FASJEM SIMULE SIMULEE DIFFEE DIFF-CLIME

Rate of Convergence Linear NA Closed form Linear Linear NA NA Closed form NA
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Computational Complexity
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Computational Complexity: Definition

Complexity of an algorithm is the amount of resources required for
running it.

In machine learning, it is mainly related to n and p.

Use big O notation
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Computational Complexity: how to calculate

Some cases:
I Matrix Multiplication: O(np2)
I Matrix inversion O(p3)
I SVD inversion O(p3)
I soft-thresholding O(p2)

How to calculate:
I Num of Iter × Computational complexity of each Iter
I Direct calculate e.g., Closed form solution
I Use existing method e.g., linear programming
I Special case: linear convergence.
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Computational Complexity: Different methods

Single sGGM Multiple sGGMs Differential Network

Method: GLasso CLIME EEGM JGL FASJEM SIMULE SIMULEE DIFFEE DIFF-CLIME

Computational
Complexity

O(Tp2) O(p5) O(p2) O(Tp3) O(Tp2) O(K 4p5) O(p2K 4) O(p2) O(p8)
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Summary

We introduce the statistical convergence rate.

We introduce the optimization convergence rate.

We introduce the computational complexity.
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