Fast and Scalable Joint Estimators for Learning
Sparse Gaussian Graphical Models from
Heterogeneous Data with Additional Knowledge

Beilun Wang'
Advisor: Yanjun Qi'
Dissertation Committees:
Mahmoody Mohammad (Committee Chair)’
Xiaojin (Jerry) Zhu?
Farzad Farnoud'
Tingting Zhang'

"University of Virginia
2University of Wisconsin—Madison

August 24, 2018
1/108



2/108



Background: Entity Graph

@ Many applications need to know
interactions among entities:
o Gene Interactions
e Brain connectivity
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Background: Entity Graph

@ Many applications need to know
interactions among entities:
o Gene Interactions
e Brain connectivity

@ Why to study the entity graph

e Understanding
e Diagnosis, e.g., marker
e Treatment, e.g., drug development.
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Background: What Type of Edges? Correlation to
Conditional dependency

A1: Children swim Al
A2: Weather is hot A2
A3: High sale of ice cream

A4: Wear less amount of clothes
A5: High Electricity A4
Consumption
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Background: What Type of Edges? Correlation to
Conditional dependency

A1 A2 A3 A4 A5

A3 — A1l
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Background: How to Infer Entity Graph?

@ To measure conditional dependency
interactions physically.

@ Largely unknown and hard to
measure physically.
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Background: How to Infer Entity Graph?

@ To measure conditional dependency
interactions physically.

@ Largely unknown and hard to
measure physically.

e #Physical check for all possible
conditional dependency edges = 2P
(binary experiments)

e For example, p = 160 important
regions in human brain

e For example, p = 30000 genes in
human cell

e Much more than Trillions (24°) of
biological experiments

7/108



Background: Entity graphs from Observed Samples
(Entity as Feature)

o Trillions-ofbiological-experiments —
Data-driven approach

@ Experiments (not physically check)
— Data = Entity Graph

Context/Task(1)

- g Infer |[®-®
= RISE
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Background: Entity graphs from Observed Samples
(Entity as Feature)

o Trillions-ofbiological-experiments —
Data-driven approach

@ Experiments (not physically check)
— Data = Entity Graph

@ nexperiments — n data samples N
i k(1
e Each sample is a snapshot of all the ontext/Task(1)

" - Infer |®-®
entities. '@
e Each sample has measurements of ™ O
p features/entities.
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Background: Entity graphs from Observed Samples
(Entity as Feature)

o Trillions-ofbiological-experiments —

Data-driven approach

@ Experiments (not physically check)
— Data = Entity Graph
@ nexperiments — n data samples

e Each sample is a snapshot of all the et

" - Infer |®-®
entities. '@
e Each sample has measurements of ™ O

p features/entities.

@ ndata samples is enough — a well
estimated entity graph of p when
n >> p (low-dimensional).

@ p > n (high-dimensional) needs novel
approaches
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Background: Entity graphs from Heterogeneous Data

(Entity as Feature)

@ Most applications have heterogeneous samples.

@ For example:

o Totally ny; data samples
e From K different but related contexts, each has n; data samples

Context/Task(1)

Context/Task(2)

Machine learning
approach
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Background: Entity graphs from Heterogeneous Data

Context/Task(1) Context/Task(2)

Leukemia Commonalit Breast Cancer
Dataset ¥ Dataset

Case I:

Case ll:

Normal Cell Differences Cancer Cell
Dataset Dataset
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Task |: Learning multiple related graphs

@ Learning multiple related graphs
@ E.g., TF-TF interactions
e Three graphs are similar

Normal

Leukemia

)7
)
()
N

Stem

g
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Task Il: Integrating additional knowledge

@ Integrating known knowledge in Learning multiple related graphs
e E.g., known knowledge in Brain Connection

Context/Task(1)
Joint infer
Graph 1
x@ ¢
Context/Task (K)
Graph K
GE)
XK
Data Additional Knowledge Graphs
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Task Ill: Learning sparse changes between two graphs

@ A very interesting task:
e Find differences in the brains of people with diseases, e.g. Autism,
Alzheimer’s
e Use for understanding
o Use for diagnosis
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Notations

X() j-th Data matrix.

¥ () j-th Covariance matrix.

Q) j-th Inverse of covariance matrix (precision matrix).
p The total number of feature variables.

Nt The total number of samples.

X! the concatenation of all Data matrices.

¥ 't the concatenation of all Covariance matrices.

Q! the concatenation of all Inverse of covariance matrices
(precision matrices).

Wltot (WI(1)’ Wl(2)7 L WI(K))
Wg)t (Ws, Ws, ..., Ws)
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Motivation: More Num of features (p) to consider

@ Yeast gene: 6K

{

Human gene: 30K

@ Words interaction, millions of
words (p > 1,000, 000)
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Motivation: More num of tasks (K) to consider

© .
Patient 1 Tissue 1
| 0

Normal vs Cancer .
Tissue 2

\ Patient2 — a

ln Patient 3 Tissue3
K=2 K =91

ENCODE Project Consortium et al. An integrated encyclopedia of dna elementsin the human genome. Nature,
489(7414):57-74, 2012.
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Motivation: Limitation | — Slow Computation

The = best moei | Taskli Task II
baseline of
Computational 3y 4.5 3y
complexity O(Kp?) /iter | O(K*p>) | O(p°)/ iter
Linear
Bottle neck SVD program- SVD
ming
@ IfK=91and p=30K [}
The = best| ik Task I Task II
baseline of
Time 3.5 days / iter | 6 trillion years | 1 hour/ iter

@ Can we have a O(p?) method?
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Motivation: Limitation Il — No consideration of
parallelization

Computer Clusters GPU

@ Reduce O(p?) to O(1).
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Motivation: Limitation Ill: Lack of error bound analysis

° |6 — 67|

@ Missing analysis under a
high-dimensional setting

(p>n)

. plimal Error
@ No sacrifices of the accuracy Qptimal Error bound

from speeding-up and

scaling-up the algorithm Estimated parameter
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Our Aim: Fast and Scalable estimators for three types
of joint graphs estimation

@ Fast and scalable estimators for the three tasks
@ Parallelizable algorithms
@ Integrating additional knowledge

@ Sharp convergence rate
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Solution for Limitations - Elementary Estimator J
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Background: summary of the previous optimization
strategy

@ e.g., ADMM algorithm

° &

ﬂ Gradient updates O(p3
Starting point

Estimated parameter
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Elementary Estimator (EE) for joint sGGMs tasks

@ Previous studies:

@ v.~.'
ﬂ Gradient updates 0(p3
Starting point

@ Elementary Estimator:

. D

ﬂ 14
Pre-compute 0(p3)

Starting point Compute once

lepaént-wise operator

(p*))
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Elementary Estimator (EE): Step | — Backward
mapping

-~

@ Backward mapping 5*(¢) of the parameter (Solution of Vanilla
Maximum Likelihood Estimator (MLE))

@ Vanilla MLE: argmax £(#)
0

o Already close to true parameter
o But without assumptions e.g., sparse
e For instance, linear regression solution (X7 X)~'XTY

Backward mapp+t

N

. r

L4
j : Pre-compute 0(p?)

Starting point Compute once

leprént-wise operator

o(p*))
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Elementary Estimator: Step || — Optimization
formulation

Elementary Estimator (EE)

argminR(6)
0

-~

Subject to: R*(0 — B*(¢)) < An

o LetR(:) = - |1 Y

argmin/ 6]
0 (3.2)

-~

Subject to: ||6 — B*(¢)]|oo < An

@ Easy to prove the sharp convergence rate when R and B* satisfy
certain conditions.
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EE-Benefit: Fast and scalable solution

@ A soft-thresholding operator (closed form)
@ Closed form & O(p?)
@ Easy to parallelize in GPU

0= 8),(5(9))
[S\(A)]j = sign(Ay) max(|4;] — 2,0) (3.3)

@ Element-wise

O, Oy G v Oy On O O
0y . - O On O3 _rove | O %2 T

| z=Cov(X)= z 7| T=Cov(X)= a
" Om On G2 " Op Ca w7

Apply same operator
Independent calculation
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Background: sparse Gaussian Graphical Model
(sGGM) to derive Conditional Independence Graph

Il
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EE-GM: Elementary Estimator for sGGM

@ Vanilla MLE: argmin — log(det(Q2))+ < Q, % >
Q

@ Backward mapping of Q is ¥~
@ Not invertible when p > n
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EE-GM: Elementary Estimator for sGGM

@ Vanilla MLE: argmin — log(det(Q2))+ < Q, % >
Q

@ Backward mapping of Q is ¥~

@ Not invertible when p > n

@ Need apporximated backward mapping
e proxy backward mapping On ~ B*(q@)
e InsGGM, 6, = [T,(X)]"

Solution of High-
Vanilla MLE (no L1
regularization):
backward mapping

Proxy L1
backward
7| mapping

Elementary
— Estimators
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EE-GM: Elementary Estimator for sGGM

argmin| ||+
0

~.

Subject to: ||0 — B*(#)||oc < An

On = [TW(Z)] U

argmin||Q|[1 off
Q

subject t0:[|Q2 — [Ty(Z)] ™" ||ac.oft < An

EE R() | 6 On R*
EE-sGGM | |||l | Q [ [TWE]" |1l [l
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EE-Benefit: Easy to prove error bound

@ Error bound:

Proxy
116 = 6%||oo < 2An Backward
10— 0"l <4Vsh,  (3.6) Mapping
110 — 6%||1 < 8sAn
@ Condition:
An > |00 = 0%]]o (3.7)

@ Constant: s is the num of non-zero
entries.
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Outline

© Method I: FASJEM
@ Background
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Task |: Learning multiple related graphs

@ Learning multiple related graphs
@ E.g., TF-TF interactions
e Three graphs are similar

Normal

Leukemia

)7
)
()
N

Stem

g
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Background: Multi-task sGGMs

@ A pipeline to infer Multiple Related Graphs from heterogeneous

datasets X(1),.. . X(K)1,

El
= 0.23 | 0.05 |-0.02 | 0.05
T 10
s
g s
3 023 0.25 | 010 |-025
o of
=]
g 0.05 |-025 | 1.10 | -0.24| 0.10
< -10
z
£-15 -0.02|0.10 |-0.24 02
5 -20
< 20 40 60 80 100

Time (s) 0.05 |-0.25 [ 0.10 |-0.24

hﬂulthtask

el GGM
5 0.23 | 005 |-0.02| 005
s
<1
@ -0.23 0.25 | 010 |-0.10
aQ
=]
e 0.05 [-0.25 | 1.10 | -0.24| 0.10
E -0.02 | 0.10 |-0.24 024
< 20 40 60 80 100

Time (s) 0.05 |-0.10 | 0.10 |-0.24

1X®!: the concatenation of (X(V, X® . X))
¥ (),

)
Q).

Y': the concatenation of (X
Q™": the concatenation of (Q

(), 5
M o

)
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)7.--,
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Decode
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Decode
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Background: Joint Graphical Lasso

Graphical Lasso

argmin — log det(Q)+ < Q, X > +An||Q|1 (4.1)
Q

e Add R/(\) ()

Joint Graphical Lasso

argmin Y _(—L(Q7) + )y Z 192014
Q>0 5 (4.2)

+XR(QM, QR ),...,Q(K))

° Q= (21, Q@) ... Q)
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Outline

© Method I: FASJEM

@ Method
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Enforcing relatedness of multiple graphs through
Regularization: FASJEM-norm

argmin||Q|[1 off
Q

N (4.3)
subject to:(|Q — [Tv(X)] " [|oo ot < An

e Add R'(") (X

R(Qot) = ||Qot] |1 + R’ (Qor)
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Elementary Estimator (EE)

argminR(0)
0 R (4.5)

Subject to: R*(0 — B*(¢)) < An

EE R() 0 0, R*(")
EE-sGGM IR Q | L) |- 1loo
FASJEM | |- |l + R’ | Q@ | inv[T,(ZP)] | max(]| - [Jec, R'™*)

FASJEM

argmin ||Qot||[1 + R (Qtot)

Qtot

.1 |Q0t — INV(T(Zt0))] oo < An (4.6)
R* (Qot — IV(Ty(Zt0t))) < An

v
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FASJEM: Variations

o FASJEM-G:
R()=1"1llgz2
& o) 6@ (0 (K) (4.7)
HQTOTHQ,Q = Z Z H(Qj,k s Q/vk yooe ’Qj7k’ . 7Qj,k )||2
j=1 k=1
o FASJEM-I:
R()=1"llg,
P& o) 6@ () (K) (4.8)
1190t IG.00 = ZZ 102, % Qs Qi o
j=1 k=1
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FASJEM: Optimization Solution

@ JGL solution:

' &
ﬂ ~
( T3
Gradient updates
0 (Kp®) / iter

Estimated parameter
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FASJEM: Optimization Solution

@ JGL solution:

' &
ﬂ ~
( 13
Gradient updates
0 (Kp®) / iter

Estimated parameter

@ FASJEM solution:
n
: r .

Proximal Operator
ﬂ L4 0(p?)& GPU / iter
Pre-compute O(Kp?) h(p )

Starting point Compute once
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FASJEM: Optimization Solution — Proximal algorithm

@ FASJEM solution:

|-
Q )* —>" Proximal Operator
w - Pre-cgmpute o(Kkp?) E(pz)& GPU |/ iter
Starting point Compute once
@ In each iteration, a proximal operator
@ Element-wise operator, O(p?)
prox, ., ()
XD x5 prox., ., (%)
b ), : .
= 0, \X,-(QI <7 = max((x} —).0) (4.10)
Xp 1 X <= + min(0, (x? 4 7))

(4.9)
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FASJEM: Optimization Solution — Proximal algorithm

@ FASJEM solution:

N
° )* A*I Proximal Operator
ﬁ\ T Pre-cgmpute O(Kp3) Q(P*)& GPU/iter
Starting point Compute once
@ In each iteration, a proximal operator
@ Element-wise operator, O(p?)
@ GPU-parallelizable O(1)
@ e.g., proximity of ¢4
prox, . (X)
() () prox. j, (x)
= o<y = max((x{) —7),0) (4.10)
Xk X <= + min0, (x + 7))

(4.9)
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FASJEM: Computational Complexity

The = best! ki | Taskll Task Il

baseline of

Computational 3y 4.5 3\

complexity O(Kp?) liter | O(K*p>) | O(p°)/ iter
Linear

Bottle neck SVD program- SVD
ming

Our @ | EagyEM

proach

Computgtlonal O(Kp?) / iter

complexity

Parallelization | O(K) / iter
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Summary

EE R(") 0 0, R* (")
EE-sGGM Il - 14 Q (Tv(x)] ! I - oo
Task| | FASJEM | [|- |1+ R | Q° | inv[To(Z®)] | max(|| - [|oo, R”")
Task Il
Task Il
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Outline

© Method I: FASJEM

@ Results
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Results: Theoretical Analysis

@ p' = max(Kp, Niot)
@ Error Bound: ||Qor — Qiyl|F < 324%&\/%

Multi-task: | K Single-task:
O(M) IEE)))

Niot n;

@ By assuming n; = ¢t
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@ p' = max(Kp, Niot)
@ Error Bound: ||Qor — Qiyl|F < 324%3\/%

Multi-task: | K Single-task:
O(M) IEE)))

Niot n;

@ By assuming n; = ¢t

@ We can conclude that '8  jloep
tot tot
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Results: Theoretical Analysis

@ p' = max(Kp, Niot)
@ Error Bound: ||Qor — Qiyl|F < 324%3\/%

Multi-task: | K Single-task:
O(M) IEE)))

Niot n;

@ By assuming n; = ¢t

@ We can conclude that '8  jloep
tot tot

@ This indicates that the multi-task estimator is better!!!
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Results: Synthetic Data generation process

9
Qo —

L|e2fojogo -0.23 | 0.05 |-0.02 | 0.05

02 1 10210 )02 0.2 0.25 | 010 [-0.25
»
>

0|02t o020 005 [-0.25 | 110 | -0.24| 0.10

oo o2 02 0.02| 0.10 | -0.24 0.2

o |02] 0|02 005 [-0.25 | 0.10 |-0.22

Inverse

1oz o]o|o -023 | 0.05 | -0.02 | 0.05

02| 1 |o2|o0 |0 -0.23 0.25| 0.10 |-0.10 N
>

0oz 1 foz2]|o0 0.05 |-0.25 | 1.10 | -0.24 0.10

oo o2 02 -0.02{ 010 [-0.20 0.24

oo |o oz 0.05 |-0.10 | 0.10 |-0.24

Context/Task(1)

Context/Task(2)
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Results: Synthetic Data Results

(a)ROC curve-[p=2000,K=2,n=p/2]

(c)p vs.

ime-[K=2,n,=p/2]

(e)p vs. time-[K:Z,ni=p/4]

0 2000 4000 6000 8000 10000

p (Num of nodes)
(d)K vs. time-[p=4000,ni=p/2]

2000 4000 6000 8000 10000
p (Num of nodes)

(K vs. time-[p=4000,ni=p/4]

=
043 +FASJEM-G
~-JGL-group
02 Single-task EE
R —Glasso
0 02 0.4 0.6 08
FPR
(b)K vs. time-[p=2000,ni=p/2]
4
— | FASIEM-G
S ||»-JGL-group
8 3fl-e-FA PU!
=3
k<)
=2
)
E
E1
>
°

o

6 8 10
K(Num of tasks)

T

+-FASJEM-G
~JGL-group
©-FAS-G-GPU

4 5 6 7 8
K(Num of tasks)
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Results: Real-world Data Results — Number of
Matched Edges versus the Existing Domain
Databases

@ Validation by counting the overlapped interactions according to the
existing bio-databases (MInact)

breast/colon cancer data Crohn's disease data

15 8
6

10
4

5
2 IA|_‘

0 . 0 ”

%, % 2 “%, o
% % 2, @’?9,4/ '5')
FASJEM-G JJGL-group e, KN
s,
3

s myeloma and bone lesions data myeloma and bone lesions data

6

4

2

0 Y, Ly

% “, %, %, %
2 %, 2
O‘/ Z /o Y.
,/_o \/@ / OO, C‘
%, %, %, %, &4
%, S 7
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Outline

© Method II: JEEK
@ Background
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Task Il: Integrating additional knowledge

@ Integrating known knowledge in Learning multiple related graphs
e E.g., known knowledge in Brain Connection

Context/Task(1)
Joint infer
Graph 1
x@ ¢
Context/Task (K)
Graph K
GE)
XK
Data Additional Knowledge Graphs
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

@ Integrating additional knowledge through a novel regularization
function R(+)

K K
RUQY) = ST (W 0 QP11 + S [|Ws 0 Qg (5.1)
i=1 i=1

o 00 =0l g
° {W,(’)}: weights describing knowledge of each individual graph.
@ Ws: weights describing knowledge of the shared graph.
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Background: Shared and Task-Specific Subgraph
Representation

Context/Task(1) Context/Task(2)
© ®)
® & & ® @ Know both .
@00,z ere o? @@, ... @) e R @ House keep|ng
interactions
®®@CK%>®®® o Context-specific
®-® ® ® ® ® networks

1 Q.
Ql

Individual(1) Individual(2) Shared
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

@ Use tot notation

R(°) = [| W[ 0 Q81| + [ WE" 0 01 (5.2)

@ W/et: weights describing knowledge of each individual graph.
e W' weights describing knowledge of the shared graph.
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

@ Use tot notation

R(°) = [| W[ 0 Q81| + [ WE" 0 01 (5.2)

@ W/et: weights describing knowledge of each individual graph.
e W' weights describing knowledge of the shared graph.

@ No need to design knowledge-specific optimization

@ KW-norm is flexible.
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Example I: KW-norm representing the edge-level
knowledge

@ e.g., Spatial distance among brain regions;

¢
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Example II: KW-norm describing the node-level

knowledge

@ e.g., Xz is a known hub node;

1/y | 1

1/y

1/y | 1

1/y | 1
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Background: SIMULE

@ Decompose Q) = Q) + Qg

@ An /4 minimization approach

aM. Q@ . Ak g -

argmin Y |19 [|1 + eK][Qs|ls

Qg i

Subject to: |[ZD(Q) + Qg) = Il < A, i=1,...

Context/Task(1)

) ere

(@02

Context/Task(2)

®®
©-®

® ‘

®© ®
®
80

@20,z e R

[XC)
®-©®

®

® ®
efle

® ®
® ®
® @

K

) ] ¥
Individual(1) Individual(2) ~ Shared
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Background: WSIMULE: A weighted SIMULE
estimator

am a® 6k g¢— ar(g)minz 19511 + eK][Qs] 1
Qs i

Subject to: [TV + Qg) = flja < An, i=1,...,K

o ADD W) Wy [}

a9, Qs = Y argmin|| W o Q|1 + K[| Ws 0 Qs
i o as (5.3)
Subject to: [|[ED(Q) + Qg) = fl|lo < A, i=1,.... K.
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Outline

© Method II: JEEK

@ Method
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Proposed Method: Combine EE and KW-norm

Elementary Estimator

argminR(6)
0

~

Subject to: R*(6 — B*(¢)) < A\n

+

R(Q1) = || W[ 0 Q|1 + || WE" 0 Q|
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Proposed Method: Joint Elementary Estimator
incorporating additional Knowledge (JEEK)

EE R() | 0 7, ()
EE-sGGM | |||l Q | [TEI | s
JEEK kw-norm | Q©t | inv[T,(X?)] | kw-dual

JEEK

argmin|| W/°" o QI°|[4 + [| W5 0 Q]|
Q;OI,tht

Subject to: || WPl o (P — inv(T,(Z°)))|s < An
|WE o (1 — inv (T (ZP)))]|0 < An

Qtot _ Qtsof + QII‘OI‘

(5.6)

v

62/108



Proposed method: JEEK — Solution

@ Fast and Scalable solution? — p? small linear programming
subproblems with only K + 1 variables:

argmlnz |wiai| + K|wsb|
a;,b

An (5.7)

Subjectto: |ai+b—¢i| < ———,
min(w;, Ws)

i=1,... K

g = Q, 1« (the {j, k}-th entry of Q0)
b:= S/k

¢ =[T(EN)],.

W].E’;_w,and WS = ws.
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Why JEEK is better

@ Rich and flexible for integrating additional knowledge
e e.g., spatial, anatomy, hub, pathway, location, known edges;
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Why JEEK is better

@ Rich and flexible for integrating additional knowledge
e e.g., spatial, anatomy, hub, pathway, location, known edges;

@ Parallelizable optimization with small sub-problems.
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Why JEEK is better

@ Rich and flexible for integrating additional knowledge
e e.g., spatial, anatomy, hub, pathway, location, known edges;

@ Parallelizable optimization with small sub-problems.
@ Theoretical guaranteed
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JEEK: Computational Complexity

The — best| g1 | Taskll Task II

baseline of

Computational 3y g 4.5 3\

complexity O(Kp?) /iter | O(K*p>) | O(p°)/ iter
Linear

Bottle neck SVD program- SVD
ming

Our " | FASJEM | JEEK

proach

Computational oy 1 4.0

complexity O(Kp7) / iter | O(K*p<)

Parallelization | O(K)/iter | O(K*)
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Summary

EE R() 0 0 R*()
EE-sGGM Il - 14 Q (Tv(x)] ! I~ oo
Task | | FASJEM | ||| + R’ | QO | inv[T(E°)] | max(]| - |J, R'™*)
Task Il JEEK kw-norm | Q" | inv[T,(X"")] kw-dual
Task lll
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Outline

© Method II: JEEK

@ Results
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Theoretical Results

@ Sharp convergence rate as the state-of-art

||§tot 7 QIDI*”F < 4 /ki +ks)\n
maX(|| VVIIOI (ﬁtot Qtot*)”ooa H Wéol (ﬁtot _ QIO!*HOO) < 2An (58)
WP o (Q7 = QI)ls + || WE" o (QF" — Q™)+ < 8(ki + ks)An

Where g, ¢, k1 and kp are constants

R *
||Qtot_Qtot ||

tot tot
101 am Wi W5k [t + ko) ro(kp) — ©9)

K2 Niot

<
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Empirical Results on Multiple Synthetic Datasets

0.8 (a)AUC vs. p - [hub,K=2,n=p/2] 15 (b)Time vs. p-[hub,K=2,n=p/2] 1éc)Time vs. p-[perturb,K=2,n=p/2]

1 | [Fe-JEEK -5-JEEK
o | |-A-W-SIMULE -4 W-SIMULE
~0. s = Al |4-)JGL-hub = Al 4 GL-perturb)
B mmme b= 1 v el ) -
T f " %10 am %10 R
) 1 ko) o7 o P
S H = , H = 5 \
004 | o & | o ‘_’_2 |
=] 1 £ - £ L
= E=rrr £ 5‘;/5—5:——5———‘ £ 5“/5—5:—45———‘
0.2 : —+ JEEK-NK : :
| |-&-W-siMULE H H
I |4 JGL-hub | |
0 v 0 L 0 L
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
p (number of features) p (number of features) p (number of features)

@ JEEK outperforms the speed of the state-of arts significantly
faster (~ 5000x improvement);

@ JEEK obtains better AUC as the state-of-the-art;

@ JEEK obtains better AUC than JEEK-NK (no additional
knowledge).
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Empirical Results on Two Real-world Datasets

Matches vs. Time - [Genelnteract]
80 T T T T T

60 [~ N
1723
(0]
=
o
©
= JEEK-PPI []
40 |- JEEKDavid O[]
JEEKNK  +
W-SIMULE-PPI A
W-SIMULE-David
20 1 1 I I I

200 400 600 800 1000 1200 1400
Time (s)

(@)

Accuracy (%)

a o g a a o9
o N A~ OO 00 O

Accuracy vs. Time - [ABIDE]
T T T T

]

+

A

JEEK 0O

JEEK-NK

W-SIMULE A
NAK

+

10

20 30 40
Time (s)

(b)

50

@ (a). On real-world gene expression data about leukemia cells vs.
normal blood cells. Used multiple types of additional knowledge;
@ (b). On real-world Brain fMRI dataset: ABIDE. Using LDA as a

downstream classification for evaluating JEEK vs. baselines.
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Outline

© Method I11: DIFFEE
@ Method
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Takes llI: Learning sparse changes between two
graphs

@ Each graph may be dense or sparse, differential net is sparse
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Proposed Method Ill: DIFFEE

@ Two cases : d (disease) & ¢ (control)

argmin] |6
0

Subject to: (6.1) A==

-~

10 = B(9)lloo < An

argmin||A||4
A
Subiject to:
18 = B* (X4, 6)lloe < An
(6.2)

74/108



Proposed Method Ill: DIFFEE

Elementary Estimator (EE)

argminR(0)
0 _ (6.3)
Subject to: R* (6 — B*(¢)) < \q

EE R() | 6 On R*(-)
EE-sGGM | ||-]|1 | @ _ [T, ()] _ || - [loo
DIFFEE | |||}y | A ([Tv(Zd)]‘1 - [TV(ZC)]‘1) 11 oo

argmin || Al[5
A

- ~ (6.4)
Subject to: [|A — ([TV(Zd)]‘1 — [TV(ZC)]‘1) lloo < An
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DIFFEE: Optimization Solution

@ Close form
A =S, (TWE) " = [TuEZ) ) (6.5)

[SA(A)]j = sign(Aj) max(|A;| — A, 0) (6.6)
@ GPU-parallelizable

ﬂ. — ) ,, Closed form
Pre-compute 0(p3) 0(p*)& GPU

Starting point Compute once
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DIFFEE: Computational Complexity

The — best| g1 | Taskll Task II

baseline of

Computational 3y g 4.5 3y

complexity O(Kp?) liter | O(K*p>) | O(p°)/ iter
Linear

Bottle neck SVD program- SVD
ming

Our 81 FASJEM | JEEK DIFFEE

proach

Computational on 4.0 3

complexity O(Kp?) / iter | O(K*p<) O(p°)

Parallelization | O(K)/iter | O(K?*) O(p°)
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Summary

EE R() 9 O R0
EE-sGGM [ - Il Q T2’ |- oo
Task | | FASJEM | [|-|h + R’ | @° | inv[T,(E°)] | max(]| - [Jee, R™*)
Task I JEEK kw-norm | Q® | inv[T,(Z")] kw-dual
()]
Task Ill DIFFEE . A [ = oo
H H1 _[TV(ZC)]—1 H H
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Outline

© Method I11: DIFFEE

@ Results
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Results: Theoretical Analysis

@ Sharp convergence rate as the state-of-art

16k1a log p
K2 min(nc, nd)

1A — A%l <

32k1a klogp
K2 min(nc, nd)

1A — A% < (6.7)
64x1 ak log p

A— Ay <
18- ah= min(1e. 1)
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Results: Synthetic Data Results

(b) F1-Score [Model 2]
i I I T

(a) F1-Score [Model 1]
I T

0.03 - 0.7
Varyingp % * Varyingp X
Varyings < 0.6 Varyings < » -
Varying n low-dim A Varying n low-dim A A
o N _di 05 . N _di - -
© 0,02 Varying n high-dim Vv : B © Varying n high-dm Vv 7y
= - = X
& A goar % B
@ A X @
k7] . % 0.3 - )? u
Q A o}
m 0.01 - . = o -4
. %70 v 02— _
oL ! ! oL ! ! ! ! !
0 0.01 0.02 0.03 0 01 02 03 04 05 06 07
DIFFEE DIFFEE
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Results: Synthetic Data Results

Time (log(s))

Time (log(s))

(a)Time vs. p-[Model 1]

(b)Time vs. p-[Model 2]

sparsity (ratio of non-zero entries)

10 ; 10 ;
' > — ' —
Z | - / S
! = !
5 % Z5 .
! = !
! ° !
! £ !
0 T - DIFFEE =0 T - DIFFEE
' —+—FusedGLassd ' —+—FusedGLassq
. DensityRatio . DensityRatio
! -&-Diff-CLIME ! -&-Diff-CLIME
-5 " -5 '
0 100 200 300 400 500 0 100 200 300 400 500
p (number of features) p (number of features)
10 (c) Time vs sparsity-[Model 1] 10 (d) Time vs sparsity-[Model 2]
—4DIFFEE —4DIFFEE
8 —FusedGLassq 8 —FusedGLassq
DensityRatio| = DensityRatio|
w
6 S - 26 h
M
4 £ 4
£
2 2
% —
0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

sparsity (ratio of non-zero entries)
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Results: Real-world Data Results

@ Apply to Brain image data (fMRI)

@ Use the estimated different network in LDA

@ Compare the accuracy with the state-of-art methods

Method

DIFFEE

FusedGLasso

Diff-CLIME

Accuracy (%)

57.58%

56.90%

53.79%
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Outline

@ Discussion
@ Questions from Proposal
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Support Analysis Results

@ DIFFEE as an example

|A* = B*(Zd, Ze)|loo < An
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Support Analysis Results

@ DIFFEE as an example

|A* = B*(Zd, Ze)|loo < An

o I

86/108



Support Analysis Results

@ DIFFEE as an example

|A* = B*(Zd, Ze)|loo < An

o I

Aj;=0=>A;;=0 (7.4)

e supp(A) C supp(A*) 86/108



Support Analysis Result

@ Additional Assumption

min |AL > 3||A* — BX(Zd, Z¢)][oo (7.5)
sesupp(A*)
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Support Analysis Result

@ Additional Assumption

min |AL > 3||A* — BX(Zd, Z¢)][oo (7.5)
sesupp(A*)

supp(A*) C supp(A) (7.6)
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Support Analysis Result

@ Additional Assumption:

min |AL > 3||A* — BX(Zd, Z¢)][oo (7.5)
sesupp(A*)

supp(A*) C supp(A) (7.6)

@ Combine the above results

supp(A*) = supp(A) (7.7)
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Standardized Covariance Matrices

@ Real world: Different tasks — different value scale
e e.g., fMRI vs RNA squencing

@ Problem: hard to choose )\, in different scales
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Standardized Covariance Matrices

@ Real world: Different tasks — different value scale
e e.g., fMRI vs RNA squencing

@ Problem: hard to choose )\, in different scales

@ Solution: Gevariance-matrices = Correlation matrices

The inverse of Correlation matrices have the same support set as the
inverse of covariance matrices

@ Nonparanormal extensions — Relax the Gaussian Assumption
@ Added in all the packages
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lteration number T

@ linearly converge method: T = O(nlog(+5;))
@ TOL is the error bound
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lteration number T

@ linearly converge method: T = O(nlog(+5;))
@ TOL is the error bound

@ FASJEM error bound: O('&P))

Ntot
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lteration number T

@ linearly converge method: T = O(nlog(+5;))
@ TOL is the error bound

@ FASJEM error bound: O('&P))

Ntot
’ — tot lo Nto
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Trade-off

@ proxy backward mapping still O(p?)

@ In practice, fast in our three tasks
@ Thanks to excellent low-level implementation

@ Not well performed in low-dimensional case

@ p' = max(n,p)
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Trade-off

(a)AUC vs. n - [hub,p=200,K=2] (b)AUC vs. n-[perturb,p=200,K=2]
0.8
7o. o
=) ¢
0 0.4
=) = )EEK ) -5 JEEK
< 5 -4 W-SIMULE < . -A-W-SIMULE
0. —+ JEEK-NK 0. —+ JEEK-NK
-4-)GL-hub -4 JGL-perturb
0 0
100 200 300 400 100 200 300 400
n (number of samples) n (number of samples)
15 (c)Time vs. n-[hub,p=200,K=2] 1§d)Time vs. n-[perturb,p=200,K=2]
-=JEEK -=)EEK
-A-W-SIMULE = -A-W-SIMULE
.- - w & -
4-JGL-hub 10 4-)GL-perturb
o
=
g
= 5
0 0
100 200 300 400 100 200 300 400
n (number of samples) n (number of samples)

91/108



Outline

@ Discussion

@ Future works
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KW-norm for FASJEM

@ Revise the ¢4 norm in FASJEM to a KW-norm
KW-norm for FASJEM

R({Q"}) ZIIW(' o Q0|

_ ||Wtot Qtot‘H1

(7.8)

o {W{}: weights describing knowledge of each graph.
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Future work: FASJEM with additional knowledge —
FASJEM-K

FASJEM-K

argg)rnin || Wot © Quot||1 + €R'(Qsot)
tot

S.1||Wior © (Quot — iV(Ty(E10)))lloo < An (7.9)
R* (ot — IV(Ty(Zer))) < €An
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KW-norm for Differential Network: KEV-norm

@ Integrating both edge-level and node-level additional knowledge
through a novel regularization function R(-)

R(A) = [[We o Ap\g, |l +€el|Agy llgy 2

@ Gy is a node group.
@ WE represents the weights for edges.
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Future work: DIFFEE-K

@ Combine KEV-norm and Elementary Estimator

DIFFEE-K

arginin |We o Ap\g, |1 + €l|Ag, llgy 2
Subject to: || We o (& = ([T/(Ea)l ™ = [To(E)]™") ) lloo < An (7:11)

ella = (ITEN ™" = [T ") 13,2 < An
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Publications

@ FASJEM

@ A Fast and Scalable Joint Estimator for Learning
Multiple Related Sparse Gaussian Graphical Models,
B Wang, J Gao, Y Qi, AISTATS 2017
@ DIFFEE

@ Fast and Scalable Learning of Sparse Changes in
High-Dimensional Gaussian Graphical Model
Structure, B Wang, A Sekhon, Y Qi, AISTATS 2018

e W-SIMULE

@ A constrained! 1 minimization approach for
estimating multiple sparse Gaussian or
nonparanormal graphical models, B Wang, R Singh, Y Qi,
Machine Learning 106 (9-10), 1381-1417

@ A Constrained, Weighted-L1 Minimization Approach
for Joint Discovery of Heterogeneous Neural
Connectivity Graphs, C Singh, B Wang, Y Qi, Advances in
Modeling and Learning Interactions from Complex Data, NIPS 2017
Workshop
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Publications

e JEEK

@ A Fast and Scalable Joint Estimator for
Integrating Additional Knowledge in Learning
Multiple Related Sparse Gaussian Graphical Models,
B Wang, A Sekhon, Y Qi, ICML 2018

@ DIFFEE-K
@ A Fast and Scalable Estimator for Using
Additional Knowledge in Learning Sparse Structure

Change of High-Dimensional Gaussian Graphical

Models, B Wang, A Sekhon, Y Qi, submit to NIPS 2018
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R Package is Available !!!

@ The project website: http://jointggm.org/

@ R package "simule”:
@ install.packages ("simule")
@ demo (simule) !

@ R package "fasjem”:
@ install.packages ("fasjem")
@ demo (fasjem) !

@ R package "diffee”:
@ install.packages ("diffee")
@ demo (diffee) !

@ R package "jeek”:
@ install.packages ("jeek")
@ demo (jeek) !

@ A complete package "jointNet” will be ready by this summer.
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Back-up: Difficulty in combining FASJEM and JEEK

argmin|[W/°" o Q1|1 + || WE" 0 Q|| + eR/(Q)
Q;ot’Q%)t

Subject to: || W/ o (P — inv(T,(Z°)))|lse < An (7.12)
|WE o (1 — inv(Ty(£°1)))|oc < An
R*/(Qtot) S 6)\[7

@ Hard to optimize
@ Lose fast and scalable property
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Back-up: How to choose v in Tv(f)

@ line search
@ v from the set {0.001/[i =1,2,...,1000}
@ pick a value that makes Tv(f) and be invertible
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Back-up: Connecting to Bayesian Statistics

_ |Og(]P>(Q(")’X("), ol W/(I)j,k» Wsix))
o — log(det(QD )+ < o, £O)

+ 3 W19 ]+ WslQs; i)
j,k

(7.13)
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Back-up: Proximal algorithm Basics

@ proximity definition:
@ prox,(x) = argmin(h(u) + 3||u — x||3)
u

° arg)r(nin f(x) = g(x) + h(x)

@ proximal gradient descent:
o x() = prox, n(x*=1 — e 7 g(xk=1))
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Back-up: Proximal algorithm for FASJEM

TF,
TF,
TF,

(prox. ., ()i = {

Ti =Y, Ti >
0, |z;| <7
T+, T < =y
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Back-up: Proximal algorithm for FASJEM

TF 1
s Q

-
-
°

Tg = Ve llzall2 >

F¥ 3 PrO%alHlea (%) = { 0, lzll2 <7
TF, Q)
TF,
TFp

e 3
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Back-up: Proximal algorithm for FASJEM

TF, 1

TF,[ Q

%, Ti, [ — ai| <A
- ue proj\|12—0-“m</\= a; + Az >a;+ A
= = - a;i — ANz <a;— A
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Back-up: Proximal algorithm for FASJEM

PrOX, g, (2) = PrOjjjz_qj; <
g, ||lzg — agll2 < A

= { Aisain +ag llzg — agll2 > A

s u
TF,
TF, Q2
2 2 2
g
Vo A ORI
B.(g) = 21 22 2p
@ @ . @
v, b2 b2 . b2
W ue
(== =
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Outline

@ Notation
© Probability
© Dependence and Correlation

@ Conditional Dependence and Partial Correlation
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Notation
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Notation

P The probability measure.
Q The sample space.
F The event set.

X,Y,Z The random variables.
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Probability
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Probability Space

Probability Space

Let (22, F,P) be the probability space.
@ Q be an arbitrary non-empty set.
o F C 2% is a set of events.

@ [P is the probability measure. In another word, a function : 7 — [0, 1].
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Events

@ F contains €.
@ F is closed under complements.

@ F is closed under countable unions.
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Probability Measure

~[0,1]
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Random Variable

Let X : Q — R be a random variable. X is a measurable function.

Random Variable J
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Random Variable

R
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Probability Distribution

Probability Distribution function
Let F(x): R — [0,1] = P[X < x| where x € R. J

@ X =Y, they follow same distribution?
@ Fx = Fy, then X = Y7?
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Joint Probability

Joint Probability
The probability distribution of random vector (X, Y). J
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Joint Probability

J Twice

= .

{Head, Head} {Tall, Tail} {Head, Tail}
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Marginal Probability

Marginal Probability
A pair of random variable (X, Y), the probability distribution of X. J
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Joint Probability

1 Twice

3.

Head or Tail for the first one?

INVLIVIE Joint Gaussian Graphical Model Review Series June 23rd, 2017 15 / 34



Conditional Distribution

Conditional Distribution

Given the information of Y, the probability distribution of X. Notation
X|Y.
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Joint Probability

1 Twice

3.

| know the second one is Head.
Head or Tall for the first one?
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Relationship

Relationship
PX=x,Y =y)=P(Y =y)P(X =x|Y =y) J
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Dependence and Correlation
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Independence

Independence

X and Y are independent if and only if px, y(x,y) = px(x)py(y), where
p is the probability density function.

Independence

YIX=Y

@ Filp coin example

o Causal relationship
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Correlation

Covariance
Cov(X,Y)=E[(X — ux)(Y — ny)], where ux, pry is the mean vector.

Correlation

p(X’ Y) — COV(X,Y)

OXO0y
y

@ Linear relationship
@ Linear dependency between X and Y.

@ p(X,Y) =1 means that X and Y are in the same linear direction
while p(X, Y) = —1 means that X and Y are in the reverse linear
direction.

@ p(X,Y) =1 means that when X increase, Y increase with all the
points lying on the same line.

@ p(X,Y) =0 means that X and Y are perpendicular with each other.
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Correlation

AY

Cov(x;y)‘_
Var(y)

X = ay+by»y
= X+by(y-y)

] =

¥x
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Dependence and Correlation

@ Correlation is easy to estimate the value while independence is a
relationship to infer.

@ Dependence is stronger relationship than correlation.

@ In another word, if X and Y are independent, p(X, Y) = 0. However,
the reverse doesn’t hold.

@ For example, suppose the random variable X is symmetrically
distributed about zero and Y = X2.
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Gaussian Example

The distribution of bivariate Gaussian is:

1 1 (x—px)* (v —ny)?
f(x,y)= exp (— * ( + —
2 2roxoy\/1 — p? 2(1-p?) U§< U%’

(3.1)
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Gaussian Example

Suppose (X, Y) are uncorrelated. i.e.,(X,Y) ~ N(0, diag(c%,0%)).

X — 2 _ 2
f(X,y) _ 271_0_])-(0_ (_;(( O-)é:X) + (y O-gY) ))
_ 1 (_}(X—ux)2) 1 (_}(y—uy)z) (3.2)
Varox V2 02 N 2may 0V 20 o2
= f(x)f(y)

Therefore, if (X, Y') follows bivariate Gaussian, (X, Y') are uncorrelated if
and only if (X, Y) are independent.
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Summary

@ Correlation is easy to estimate the value while independence is a
relationship to infer.

@ In the Gaussian Case, they are equivalent.

@ From the structure learning angle, dependence is about the causal
relationship, while correlation is, more specifically, the linear
relationship.
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Conditional Dependence and Partial Correlation J
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Conditional Dependence

Let's consider a more complicated case. There is another third random
variable Z. There are two ways to view the conditional dependence.

@ X and Y are independent conditional on Z
e X|Z and Y|Z are independent

Conditional Dependence
X and Y are independent on Z if and only if

px,v|z(X,¥) = px|z(x)Py|z(y), where p is the probability density
function.
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Partial Correlation

Partial Correlation

Formally, the partial correlation between X and Y given random variable
Z , written pxy.z, is the correlation between the residuals Rx and Ry
resulting from the linear regression of X with Z and of Y with Z,
respectively.
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Partial Correlation

Sz
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Partial Correlation

Partial Correlation Calculation

Suppose P = ¥ 1 (X is covariance matrix or Correlation matrix)
Pij

pXin'V\{Xinj} = _‘/p,','pjj‘

The value is exactly related to the precision matrix (the inverse of
covariance matrix)!
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Conditional Dependence and Partial Correlation

@ Similarly, in the Gaussian Case, they are equivalent.

@ A detailed derivation is in the next talk.
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Gaussian Case

@ Partial Correlation is easy to estimate the value while conditional
independence is a relationship to infer.

@ Conditional Dependence is stronger relationship than partial
correlation.

@ In another word, if X|Z and Y|Z are independent, p(X,Y - Z) = 0.
However, the reverse doesn’t hold.
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Summary

@ Partial correlation is easy to estimate the value while conditional
independence is a relationship to infer.
@ In the Gaussian Case, they are equivalent.

@ From the structure learning angle, conditional dependence is about
the causal relationship, while partial correlation is, more specifically,

the linear relationship.
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Outline

© Notation

© Reviews

9 Why partial correlation and condition dependence are equivalent in the
Gaussian case?
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Notation
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Notation

3> The covariance matrix.
Q The precision matrix.

1 The mean vector.

x; The i-th sample follows multivariate normal distribution.
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Reviews
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Reviews

@ Probability basics
@ Dependency vs. Correlation

@ Conditional dependency vs. partial Correlation
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Summary from last talk

@ Partial correlation is easy to estimate the value while conditional
independence is a relationship to infer.
@ In the Gaussian Case, they are equivalent.

@ From the structure learning angle, conditional dependence is about
the causal relationship, while partial correlation is, more specifically,

the linear relationship.

So the remaining question is why in the Gaussian case they are equivalent
and how to infer this relationship.
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Review: Gaussian Example

Suppose (X, Y) are uncorrelated. i.e.,(X,Y) ~ N(0, diag(c%,0%)).

X — )2 B 2
f(X,y) _ 271_0_])-(0_ (_;(( O-)é:X) + (y O-gY) ))
_ 1 (_E(X — :u’X)z) 1 (_l(y - NY)z) (2 1)
Varox V2 02 N 2may 0V 20 o2
= F()f(y)

Therefore, if (X, Y') follows bivariate Gaussian, (X, Y') are uncorrelated if
and only if (X, Y) are independent.
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Why partial correlation and condition dependence are
equivalent in the Gaussian case?
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Multivariate Gaussian Distribution

Density function
Let X ~ N(u, ). f(x) = (27)"2 det(Z)_% exp(—2(x — ) TEH(x — p)) J
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Partition X, i, and

Partition X, u, X, Q.

=11
B
a=s=[on o)
=[]
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Conditional Distribution of Multivariate Gaussian

If X ~ N(u,X), it holds that Xo ~ N(uz, X22).
If X5 is regular, it further holds that

Xi|(X2 = a) ~ N(p1p2, Z1)2)

where i1 = p1 + £12%55 (a — pi2) , and
Tip = X1 — L1055, To1 = (Qu1) 7L
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Partial correlation and condition dependence are equivalent
in the Gaussian case

X1|X2 = a ~ N(pp, (Qu1)71),
If X1 only contains x; and x;, then x; and x; are conditional independent
on others iff ;; = 0.
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Estimate the condition dependence graph/Partial
correlation

Now the only thing left is to estimate Q = ¥ ~1. There are three potential
ways to do that. We call this problem as Gaussian Graphical model.

@ Directly calculate the inverse of the sample covariance matrix .
However, we cannot do that when the sample covariance matrix is
not invertible.

@ Maximum Likelihood Method
@ Regression method

For the first one, the sample covariance matrix by may not be invertible.
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Maximum Likelihood Method
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The MLE of p

n n _ _1
£(1, ) = (2r) % T}y det( 1) exp (—30 — 1) — ).
After take a first derivative, it is easy to show that x = LHJFX"
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The Likelihood of Q2

L(z,Q) = (2n)" 7 [I; det(Q’l)_% exp (—2(x — %) TQ(x — %)).
Notice that (x; — X)TQ(x; — X) is a scalar. Therefore,
(xi — %) TQ(x; — x) = trace((x; — %) TQ(x; — X)).
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The Likelihood of Q2

Since tr(A, B) = tr(B, A).

L£(%, Q) o det(Q 1) % exp (-i 'nl tr (= %) Qi ;))) (4.1)
— det(21) 3 exp (-i zn;tr (66— 06— Q)) (4.2)
— det(Q1) % exp (—;tr ( _nl (x = %) (i —%)T Q)) (4.3)
— det(Q1) % exp (—;tr(5;)> (4.4)
where, S = é(x,- —R)(xi —X)T € RP¥P.
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The Log-Likelihood of €2

In £(%,9) = const — J Indet(Q ) — Jtr (Q i()‘( —p)(x — ,u)T> .
Since det(A™!) = 1/ det(A),

In £(%, Q)  Indet(Q) — tr (Qi S (%= ) (% — M)T> (4.5)
i=1
= Indet(Q) — tr (Q§) (4.6)

where S is the sample covariance matrix.
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Regression Method
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Partial Correlation

Sz
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Partial correlation

@ As we know, the partial correlation can also be solved by the linear
regression.

@ In the Gaussian case, we can use so-called neighborhood approach.
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Conditional Distribution of Multivariate Gaussian

If X ~ N(u,X), it holds that Xo ~ N(uz, X22).
If X5 is regular, it further holds that

X1|Xo = a ~ N(p1p2, 1)2)

where fi1o = p1 + £12555 (a — pi2) , and
Tip = X1 — L1055, To1 = (Qu1) 7L
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Neighborhood approach

If X ~ N(0,%) and let X; = X;.
Xj1Xy N(Z\ 50 Xy T = Ty Eygn,Eg)
Let o := Tyj, T and o7 i= Tj — Tyj, T Tyj;. We have that
X; :OleX\j—l-Ej (5.1)

where €; ~ N(0, aj2) is independent of Xi;.
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Neighborhood approach

@ We can estimate the «; by solving p simple linear regression.

e if i-th entry of o equals to 0, it means that X; and X; are partial
uncorrelated and conditional independent.

@ Perhaps we want more assumption on «; like sparsity.
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Summary

@ In Gaussian case, the partial correlation and the conditional
dependence are equivalent

@ We have two ways to estimate them. First, directly estimate the
precision matrix by MLE. Second, solve p linear regression problem by
neighborhood approach.

@ None of them have any assumptions on the partial correlation
coefficient.

@ In the next talk, let’s introduce the solutions of these two estimators.
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Review: Gaussian Case

@ In the Gaussian case, we know the conditional dependence and partial
correlation are equivalent.

@ This pairwise relationship can be naturally represented by a graph
G =(V,E).

@ |Q| > 0 is a natural adjacency matrix.

@ We call the pairwise conditional dependence relationship among
variables as undirected Graphical Model.
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Why we need Graphical Model?
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A Toy Example
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A Toy Example

Suppose X = (X1, X2, X3, X4, X5, Xp). Each variable only takes either 0 or

1. To estimate the joint probability p(X), you need to estimate 2° values.
However, if we know the conditional independence graph,

p(X) = p(X1, X2, X3)p(Xa, X5, Xg). You only need to estimate 2* values.
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Proof of the decomposition

First, let's prove that if X7 L X3| X3, then p(Xi| X3, X2) = p(X1]|X2).
p(X1’X2)p(X3|X2) = p(Xl,X3|X2) = p(X1|X3,X2)p(X3‘X2). Cancel out
p(X3|X2) in the both sides, we can have the conclusion.

It is easy to obtain the similar result under the local markov property:

PXu XA n(v) Xnevy) = PXo | Xngwy)-
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Proof of the decomposition

p(X17X27X37X47X57X6) = p(X1|X27X37X47X57X6)p(X2|X37X47X57X6)p(X3|
By the conclusion we have in the last page, the left equals to

p(X1| X2, X3)p(X2| X3) p(X3)p(Xa, X5, Xs) (1.1)
:p(Xl,XQ,X3)p(X4,X5,X6) (12)
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Graphical Model

L RPN AN VETAR ENITL MO (OLNISIN Joint Gaussian Graphical Model Review Series July 7th, 2017 11 /25



Graphical Model

o Probability Inference: estimate joint probability, marginal
probability, and conditional probability.

@ Structure learning: Give dataset X, learn the Graph structure from
X (i.e., learn the edge patterns between variables).

ST RPN AN VETR ENITL MO (OLNIEIN Joint Gaussian Graphical Model Review Series July 7th, 2017 12 /25



A Toy Example
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Probability Inference: Calculate the joint Probability

You know that p(X) = p(X1, X2, X3)p(Xa, X5, Xe). Traditionally,
p(Xi,Xa =a)= Y p(X1, X2 = a, X3, X4, X5, Xs).
X3,X4,X5,Xs
16 operators.
By the graph, we can have
p(X1, Xa = a) = > p(X1, X2 =2a,X3) > p(Xa, X5, Xs).
X3 X4, Xs5,X6
10 operators.
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Markov Random Field

L RPN AN VETAR ENITL MO OLNIEIN Joint Gaussian Graphical Model Review Series July 7th, 2017 16 / 25



Markov Random Field

Markov Random Field

Given an undirected graph G = (V, E), a set of random variables

X = (X,)vev indexed by V form a Markov random field with respect to G
if they satisfy the local Markov property:

A variable is conditionally independent of all other variables given its
neighbors: X, L Xy\ n(v)| Xn(v)

This property is stronger than the pairwise Markov property:
Any two non-adjacent variables are conditionally independent given all
other variables: X, 1L X, | X\\qyy  if {u,v} ¢ E.
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A Toy Example
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Clique factorization

If this joint density can be factorized over the cliques of G:

p(X = [ ¢clxo)

Cecl(G)

then X forms a Markov random field with respect to G. Here, cl(G) is the
set of cliques of G.
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A Toy Example
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Log-linear Model

Any Markov random field can be written as log-linear model with feature
functions f, such that the full-joint distribution can be written as:

P(X =x) = %exp (Z W,j—fk(X)>
k

. Notice that the reverse doesn’t hold.
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Example I: Pairwise Model

Pairwise Model

1
P(X =x) = Z(0) exp Z 0 x2 + Z 0. xsxt

seV (s,t)€E

Examples:
@ Gaussian Graphical Model
@ Ising Model

These two models have good estimators to infer the MRF. Generally,
estimate © is difficult. Since it involves computing Z(©) or its derivatives.
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Example I: Pairwise Model — Gaussian Case

Gaussian Case

exp (—3(x = )" (x — )

f(Xl,...,Xk)z (27r)k|Z|

Solution:

In £(x,2) o Indet(Q —tr< izn: (x —p)(x — )T> (3.1)
i=1
= Indet(Q) — tr (Qs) (3.2)

where S is the sample covariance matrix.

For the Ising model, we use generalized covariance matrix to avoid the
normalization term.
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Example Il: Non-pairwise model — Nonparanormal
Graphical Model

Are there any non-pairwise model which is easy to estimate?

Nonparanormal Graphical Model

PX =) = F oxp (= 5(F) — ) TE ()~ )

where f(X) = (f(X1), 2(X2),...f,(Xp)) and each f; is a univariate
monotone function. f(X) ~ N(u, X).
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Summary

The formal definition of Markov Random Field (undirected Graphical
Model)

General formulation: Clique factorization
log-linear Model

Two examples: pairwise model and nonparanormal Graphical Model.

In the next talk, let's introduce the solutions of these two estimators
for sGGM.

ST RPN AN VETR ENITL MO (OLNIEIN Joint Gaussian Graphical Model Review Series July 7th, 2017 25 /25



Joint Gaussian Graphical Model Review Series — IV

A Unified Framework for M-estimaotr and Elementary Estimators

Beilun Wang
Advisor: Yanjun Qi

IDepartment of Computer Science, University of Virginia
http://jointggm.org/

July 21st, 2017

L RPN AN VETAR ENITL MO OLNIEIN Joint Gaussian Graphical Model Review Series July 21st, 2017 1/30


http://jointggm.org/

Road Map

Graphical Model
- Sparse Gaussian
Probability Graphical Model

Graphical Lasso

Linear
Regression
Lasso ]o—[ Regularized M-estimator ]

4@@ (" Unified Framework )
Assumption

[ Elementary estimator ]

ST RPN AN VETR ENITL MO (OLNIEIN Joint Gaussian Graphical Model Review Series July 21st, 2017 2 /30



Outline

© Notation

© Review

© Regularized M-estimator
@ A unified framework

© Elementary Estimator

L RUETT- AN VRS ENTL MO OLNIEIN Joint Gaussian Graphical Model Review Series July 21st, 2017 3 /30




Notation
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Notation

L The loss function.
R The Regularization function (norm).
R* The Dual norm of R.
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Review
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Review from last talk

o Likelihood of the precision matrix in the Gaussian case

@ Graphical Model Basics
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Regularized M-estimator
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Example

We want to buy a TV.

Target:

Constrains: 4K, 65 inch

Result:
SAMSUNG
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Regularized M-estimator

M-estimator

In statistics, M-estimators are a broad class of estimators, which are
obtained as the minima of sums of functions of the data.

The parameters are estimated by argmin the sums of functions of the data.

v

target
L(X,0) the loss function

Conditions
R(6) the Regularization function

Therefore, the whole objective function is:

argmin £(X, 0) + A\, R(0) (3.1)
0
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Example: Linear Model

Let's use the linear regression model as an example.
Target
Find 3, such that X3 = y.

Constrains: Sparsity

o Prediction Accuracy: Sacrifice a little bias and reduce the variance.
Improve the overall performance.

o Interpretation: With a large number of predictors, we often would

like to determine a smaller subset that exhibits the strongest effect.

V.

argéninHy — XBl|2 (32)

Subject to: ||B|lo < t (3.3)
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Example: Lasso

Since {p-norm is not a convex function, we need the closest convex
function of £g-norm.

arg;ninlly = XBll2 (3.4)
Subject to: ||B|]1 < t (3.5)

Lasso
argéninHy — XBl2 + Anl|Bl1

ST RPN AN VETAR ENITL MO OLNIEIN Joint Gaussian Graphical Model Review Series July 21st, 2017 12 / 30



Other equivalent formulation

arggmin] |3 (3.6)
Subject to: y = X3 (3.7)

Dantzig selector
argglinllﬁlll (3.8)
Subject to: [|[XT(XB = ¥)|loo < An (3.9)
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A unified framework
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Three major Criteria

Stop Point
Optimization

Convergenﬁ(ﬂ?}te' /
\ Statistical Convergence Rate

‘ J
" ~ ;

Time Complexity
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Three major Criteria

o Statistical Convergence Rate: How close is between your estimated
parameter and the true parameter. It corresponds to estimation error
and approximation error.

@ Computational Complexity: How fast the algorithm is with respect to
certain parameters, e.g., n and p.

@ Optimization Rate of Convergence: How fast each optimization step
move to the estimated parameter, such as linear or quadratic.

Traditional statisticians focus on the statistical convergence rate
(Accuracy).
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High dimension vs low dimension

@ low dimension: when n is large, the error is asymptotic 0 by the law
of large number.

@ high dimension (i.e.,p/n — ¢ # 0): the error is not asymptotic 0.

High dimensional analysis is relative hard. Traditionally, we need carefully
proof for every estimator.
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Three major Criteria

Stop Point
Optimization

Convergenﬁ(ﬂ?}te' /
\ Statistical Convergence Rate

‘ J
" ~ ;

Time Complexity
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A unified framework for M-estimator
[Negahban et al.(2009)Negahban, Yu, Wainwright, and Ravi

Decomposability of R

Suppose a subspace M C RP, a norrP—based regularizer R is
decomposable with respect to (M, ML) if

R(0 +7) = R(0) + R(7)

for all € M and v € ML, where
ML= {v eERP| < u,v >= 0Vu € M}.

Subspace compatibility constant

O(M) = sup R{u)
ver\{o} ull

with respect to the pair (R, || - ||).

ST RPN AN VETAR ENITL MO OLNIEIN Joint Gaussian Graphical Model Review Series July 21st, 2017 19 / 30



A unified framework for M-estimator
[Negahban et al.(2009)Negahban, Yu, Wainwright, and Ravi

Example: ¢4

¢1 is decomposable and the ®(M) = /s with respect to ({1, ¢2). J
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A unified framework for M-estimator

Decomposable Regularizer

Restricted Strict Convex loss function \ |:>

An = 2R(VL(07))

R (B, —07) <12
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Example: Lasso

. slogp
18, — 6713 < 0(>=%P)

In high dimensional setting, the sparsity assumption actually improves the
convergence rate a lot.
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Elementary Estimator
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We have a very powerful tool to easily prove the convergence rate. We can
also follow the similar process to prove the convergence rate for estimators
like Dantzig Selector.

However, a lot of statistical method is slow when p and n are large and
they are not scalable at all.

Are there any estimators with close form solution for the statistic problem,
which also achieve the optimal convergence rate?
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Three major Criteria

Stop Point
Optimization

Convergenﬁ(ﬂ?}te' /
\ Statistical Convergence Rate

‘ J
" ~ ;

Time Complexity
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Three major Criteria

Close-form Solution

ST RPN AN VETR ENITL MO (OLNIEIN Joint Gaussian Graphical Model Review Series July 21st, 2017 26 / 30



Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

arg;ninR(G) (5.1)

-~

Subject to: R*(6 — B*(¢)) < An (5.2)

Here B*(gg) is a backward mapping for .
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin||6||1 (5.3)
0

Subject to: |8 — (XX + €)X Ty|loo < An (5.4)

v
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Summary

@ We review the unified framework for M-estimator, which can be
applied to most regularized M-estimator problem

@ Following the similar proof strategy, we have the set of elementary
estimators.
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Notation
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Notation

Y The covariance matrix.
Q The precision matrix.
p The number of features.

n The number of samples.
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Review
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Review from last talk

@ Regularized M-estimator argmin £(6) + A,R(0)
0

@ a unified framework to analyze the statistical convergence rate for
high-dimensional statistics

@ Elementary Estimator
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Review of Gaussian Graphical Model

Suppose the precision matrix Q = ¥ 1,
The log-likelihood of Q equals to Indet(Q2) — tr (Qg)

In this talk, we will use this likelihood to derive several estimators of sparse
Gaussian Graphical Model (sGGM)
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Neighborhood Method
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Neighborhood approach

If X ~ N(0,%) and let X; = X;.
Xj1Xy N(Z\ 50 Xy T = Ty Eygn,Eg)
Let o := Tyj, T and o7 i= Tj — Tyj, T Tyj;. We have that

X = oijXN- +¢€; (3.1)

where €; ~ N(0, aj2) is independent of X, ;.
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Neighborhood approach with sparse assumption

By the sparse assumption, we estimate each «a; by a lasso estimator

o = argmin||a] Xy — Xi|8 + Mlay s (3.2)
Qj
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Review of Lasso solution

Lasso
B:argglinHﬁTX—yH%JrAHﬂHl (33)
subgradient method
g(B:A) = —2XT(y — XB) + Asgn(p) (34)
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Review of Lasso solution: State of the Art

We see that the proximity operator is important because x* is a minimizer
to the problem minyecy F(x) + R(x) if and only if
x* = prox,g (x* —yVF(x*)), where v > 0. v is any positive real number.

Proximal gradient method

Xi =7, Xi>7
(prox'yR(X)),' = 07 |Xi| <7 (35)
Xi + Y, X < =7,

By using the fixed point method, you can obtain the estimation of .
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Graphical Lasso
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Graphical
Lasso[Friedman et al.(2008)Friedman, Hastie, and Tibshirani

We already have the log-likelihood as the loss function. Can we use it to
obtain a similar estimator as Lasso?

argmin — In det() + tr (Qs) + 9l (4.1)
Q
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Proximal gradient method to solve it

Let’'s do a practice in the white board.

Super Linear algorithm.

[Xepr—=x*| _

limg o0 —x*] —
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State of the art method: Big &
QUIC[Hsieh et al.(2011)Hsieh, Sustik, Dhillon, and Ravikum

Parallelized Coordinate descent.
approximated quadratic algorithm.

i |Xhp1=x"]
IImk_)Oo W <M
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CLIME
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CLIME[Cai et al.(2011)Cai, Liu, and Luo]

CLIME
argmin ||Q||1 , subject to: [|XQ — /||cc < A (5.1)
Q

Here A > 0 is the tuning parameter.
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By taking the first derivative of Eq. (4.1) and setting it equal to zero, the
solution 5550 also satisfies:
~ ~ ~
~ Qg,asso X=X ~ (5.2)
where Z is an element of the subdifferential 0||Qg/as50]1-

L RVET- AN METHR ENITLNOIMOLIISIN  Joint Gaussian Graphical Model Series — V July 28th, 2017 20 / 29



Column-wise estimator

argmin ||f||1  subject to  [|X8 — €jf|oo < A

CLIME can be estimated column-by-column.
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Elementary Estimator for Gaussian Graphical Model J
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Elementary Estimator

Close-form Solution
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

argminR () (6.1)
0

Subject to: R*(6 — B*(¢)) < An (6.2)

Here B*(gg) is a backward mapping for .
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin||6||1 (6.3)
0

Subject to: |8 — (XX + €)X Ty|loo < An (6.4)

v
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Elementary Estimator for sGGM

argmin Q|1 o
Q (6.5)
subject t0:|Q — [Ty (X)] oo.off < An
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Summary

@ We review most sGGM estimators.
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Notation

X() The i-th data matrix

¥ () The i-th covariance matrix.

QU) The i-th precision matrix.
p The number of features.
n; The number of samples in the i-th data matrix.
K The number of tasks.
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Review
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Review from last talk

@ We introduce four estimators of sparse Gaussian Graphical Model.

@ We finish most contents about sparse Gaussian Graphical Model in
the last five talks.
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Review of Gaussian Graphical Model

Suppose the precision matrix Q = ¥ 1.
The log-likelihood of Q equals to In det(Q) — tr (Q§)
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Multi-task Learning
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Multi-task Learning

Multi-task Learning

Multi-task learning (MTL) is a subfield of machine learning in which
multiple learning tasks are solved at the same time, while exploiting
commonalities and differences across tasks.

This can result in improved learning efficiency and prediction accuracy for
the task-specific models, when compared to training the models separately.)
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Multi-task Learning

Context/Task(1)

@ Normal Cell data

Commonality Differences

Context/Task(2)

@ Cancer Cell data
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Multi-task Learning—Linear Classifier Example

Linear Classifier

f(x) = sgn(w’ x + b) (3.1)J

Multi-task Linear Classifiers
For the /i-th task,

fi(x) = sgn((wd + w, )x + b) (3.2)1
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Multi-task sGGMs
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Multi-task sGGMs

Problem

Input: {X(}

Output: {Q(D}
Assumption |: Sparsity

Assumption Il: Commonalities and Differences
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Multi-task sGGMs

Likelihood
3 ni(In det(Q()) — tr (Q(")§<">)) (4.1)

i

Likelihood with sparsity assumption

3 ni(In det(Q) — tr (Q<">§(">)) (4.2)

Subject to: [|Q)]|; <t (4.3)

v
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Multi-task sGGMs

Likelihood with multi-task setting

3 ni(In det(Q) — tr (Q(">§("))) (4.4)
Subject to: [|Q7]|; <t (4.5)
PQ®, 0B, o) < (4.6)

Joint Graphical Lasso
[Danaher et al.(2013)Danaher, Wang, and Witten]

—Zn,(lndet ) tr (Q( )5t )))+)\1\|Q()||1+)\2P(Q(1) Q@ ... )

(47)
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Optimization Challenge of Multi-task sGGMs J

ST RUEN T AN METAIR ENITLNOIN(OLNVNIEN Joint Gaussian Graphical Model Series — VI August 4th, 2017 17 / 28



General formulation

Likelihood with multi-task setting
~ ni(Indet(Q) + tr (Q<f>§(f>)) (5.1)
Subject to: [|Q7]|; <t (5.2)
PQM, @ . Q) <t (5.3)
General formulation
> f(x) +&(2) (5.4)
Subject to: Ax + Bz =c¢ (5.5)
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Optimization Challenge
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Solution—Distributed optimization

Alternating direction method of multipliers

» ADMM problem form (with f, g convex)

minimize  f(z) + g(2)
subject to Az + Bz=¢

— two sets of variables, with separable objective

> Ly(x,2,y) = f(z) +g(z) +y7 (Az + Bz — ) + (p/2) | Az + Bz — |}

» ADMM:
zFtl = argmin, L,(z, 2%, y*) // x-minimization
21 = argmin, L,(z"*!, 2, y*) // z-minimization
y* = b 4 p(AxF 4+ B2FYL — ) // dual update
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Optimization Challenges

@ For K > 2 tasks, you need carefully derive the whole optimization
solution.

@ Each step in each iteration is still a sub-optimization problem.
Sometimes, it is already difficult to solve.

@ This method is at most linear Convergence.
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Joint Graphical Lasso Example
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JGL-group Lasso example

L,({&}{Z}.{Uh) = -

M=

(s (lug det @) — trace(S(k)G(k))) +P({Z})

=
Il

1

+
[
»Mx

j@® —z® L gk,
=1

K K
n 2
PO =M S+ 3T [ S
k=1 izj

i#j k=1

(a) {@)(1)} + arg minge) {LP ({@}, {Z(z_l)}, {U(i—l)})}-
(b) {2y} & argminzy {L, ({8} {2}, {Ui-1y}) }-
(©) {U)} « {U-n} + ({8} = {Zi)})-
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JGL solution — updating @)

For k=1,..., K, update (-)Ef)) as the minimizer (with respect to @*)) of

—ny (log det @) — trace(S(k)(-)(k))) + gH@(’“) - ZEQI) + UEQ1)||%~

Letting VDV denote the eigendecomp0~sition of ) - pZEle)/ ng + pUEg 1) /nk, the solution is
given (Witten & Tibshirani 2009) by VDV7, where D is the diagonal matrix with jth diagonal

element n
k
5 (—=Dss+ /D2 + /1) -

Set the gradient to be 0, we can get the SVD part of the solution.
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JGL solution — updating Z()

where
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K
mh{lizn}lize {%; ||Z(’f) — A(k)“%-“ + P({Z})} s

*) _ gk (k)
AW =65 + Uiy

K K
14 () _ A2 ® ®?
muumlze { 3 Z ||Z AME+ M Z Z [Zi57 |+ X2 E Z Z;; .

k=1i%; i#i |k

2 = 5(A% A1 /p) ( S B )
Py S S(AG /o))
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An example for difficulty of ADMM

Algorithm 1: ADMM algorithm for the PNJGL optimization problem (6)
input: p > 0,4 > 1 fpax > 0;
Initialize: Primal variables to the identity matrix and dual variables to the zero matrix;
for ¢ = :tmax do
P ups
while Not converged do
' Expand (§(@2+ 1+ W +2') = (0" +mS' +F),p.m ):

.. Expand(%(@' —(l'+M’)+Z:)—3%(Q3+n:S:—F)Ap.n;):
Z'+— T (9’+‘:—.%‘-) fori=1,2;

:'kq;(;(u'f_uw(e' —92))+:';(F—G)A§§):

W 3(T =V +(0' - %) + 55 (F+G");

Fe F4p(@ -0 —(V+));

G G+p(V —W7);

O~ Q@ +p@-2Z)fori=12

SITIRUEL AWV EISRETTL RO (VAT Joint Gaussian Graphical Model Series — VI August 4th, 2017 26 / 28



Summary

@ We introduce the multi-task sGGMs problem.
@ We introduce the challenges of the optimization for this problem.
@ We introduce the ADMM method and its drawbacks.
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Notation

X() The i-th data matrix

¥ () The i-th covariance matrix.

QU) The i-th precision matrix.
p The number of features.
n; The number of samples in the i-th data matrix.
K The number of tasks.
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Review
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Review from last talk

@ We introduce multi-task learning sparse Gaussian Graphical Models
(sGGMs).

@ We introduce the optimization chanllenges in the multi-task sGGMs.

@ We introduce the ADMM method and the solution of Joint Graphical
Lasso.
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Review of Gaussian Graphical Model

Suppose the precision matrix Q = ¥ 1.
The log-likelihood of Q equals to In det(Q) — tr (Q§)
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Multi-task Learning
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Multi-task Learning

Multi-task Learning

Multi-task learning (MTL) is a subfield of machine learning in which
multiple learning tasks are solved at the same time, while exploiting
commonalities and differences across tasks.

This can result in improved learning efficiency and prediction accuracy for
the task-specific models, when compared to training the models separately.)
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Multi-task Learning

Context/Task(1)

@ Normal Cell data

Commonality Differences

Context/Task(2)

@ Cancer Cell data
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Multi-task Learning—Linear Classifier Example

Linear Classifier

f(x) = sgn(w’ x + b) (3.1)J

Multi-task Linear Classifiers
For the /i-th task,

fi(x) = sgn((wd + w, )x + b) (3.2)1
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Multi-task sGGMs
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Multi-task sGGMs

Problem

Input: {X(}

Output: {Q(D}
Assumption |: Sparsity

Assumption Il: Commonalities and Differences
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Multi-task sGGMs

Likelihood
3 ni(In det(Q()) — tr (Q(")§<">)) (4.1)

i

Likelihood with sparsity assumption

argmax > _n;(Indet(Q")) — tr (Q<">§(">)) (4.2)
Qi S
Subject to: [|Q)]; <t (4.3)

v
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Multi-task sGGMs

Likelihood with multi-task setting

argmax > _n;(Indet(Q")) — tr (Q(">§("))) (4.4)

i 5
Subject to: [|Q7]|; <t (4.5)
PQ®, 0B, o) < (4.6)

Joint Graphical Lasso
[Danaher et al.(2013)Danaher, Wang, and Witten]

argmin — Z ni(In det(QD)+tr (Q(i)g(i)) )+ |1QO| [+ P(QD, Q3
Q)

i

(4.7)

v
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Multi-task sGGMs estimators
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Multi-task sGGMs estimators

@ Joint Graphical Lasso type estimators
@ Directly learn the commonalities and differences among tasks

@ Directly learn the differences between case and control
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Joint Graphical Lasso estimators

Different Joint Graphical Lasso

In the end, different multi-task sGGMs estimators choose different
P(QM Q@ . Q)

Solutions
Most methods use ADMM as the solution of the estimators.
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JGL:Problem

Input: {X(}

Output: {Q(D}
Assumption |: Sparsity

Assumption |I: Commonalities and Differences
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Multi-task sGGMs estimators

Group Lasso[Danaher et al.(2013)Danaher, Wang, and Witten]
P(QM, Q@ o)) =® @ . QK)g,.

SIMONE[Chiquet et al.(2011)Chiquet, Grandvalet, and Ambroise]

T N K 1
PM,Q®, .. M) = (3 (Q¥)2))F + (3 (232
£ k=1 k=1

Node
JGL[Mohan et al.(2013)Mohan, London, Fazel, Lee, and Witten]

P(QM, Q@ . k)= S RCcONQ) — Q).

ij,i>j
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Node
JGL[Mohan et al.(2013)Mohan, London, Fazel, Lee, and Wi

Definition 1 The row-column overlap norm (RCON) induced by a matrix norm ||.| is defined as
p
P2

P :

K

subjectto @ =¥+ (V5T fork=1,....K.
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Directly learn the commonalities and differences among tasks:

Problem
o Input: {X()}
e Output: {Qsi),QS}
@ Assumption |: Sparsity
@ Assumption Il: Commonalities and Differences
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Multi-task sGGMs estimators — Direct modeling

The second penalty function is still an indirect way to model the
commonality and differences among tasks. Some works try to directly
model this relationship.

Mixed Neighborhood Selection
(MSN)[Monti et al.(2015)Monti, Anagnostopoulos, and Montana]

the neighborhood edges of a given node v in the i-task is modeled as
B” + b}V Here bV ~ N(0,dY).

Consider the CLIME estimator, we can directly model the graphs as the
sum of commonality and differences

SIMULE
Q) = s+ Q7.
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Direct modeling commonalities and differences — SIMULE

SIMULE

oW 6@ i g - argmin’y_ 19511 + eK|12s] |1
QII Qs i

Subject to: [ + Qg) = I|lo < A, i=1,...,K
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Multi-task sGGMs estimators — Direct modeling the differential
networks: Problem

o Input: {X(}
o Output: {A}
@ Assumption I: Sparse Differential networks
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Multi-task sGGMs estimators — Direct modeling the
differential networks |

Fused GLasso
By adding a regularization to enforce the sparsity of A = Q. — Qq, we
have the following formulation:

argmin £(Qc) + L(Qa)An(||Qel1 + [1Q4l]1) + A2l |All1 (5.1)
Qc,Q24-0,A

v

The Fused Lasso assumes Qcase, Qcontrol, . However, many real world
applications, like brain imaging data, only assume the differential network

A is sparse.
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Direct modeling the differential networks |I: Differential
CLIME

A recent study proposes the following model, which only assume the
sparsity of A.

Differential CLIME

argmin ||Al|;
A

PO (52)
Subject to: || LAYy — (Zc — Zg)lloo < An

However, this method is solved by a linear programming. It has p?
variables in this method. Therefore, the time complexity is at least O(p®).

In practice, it takes more than 2 days to finish running the method when
p = 120.
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Direct modeling the differential networks Ill: Density Ratio

The above methods all make the Gaussian assumption. This method
relaxes the model to the exponential family distribution.

Density Ratio

pC(X7

z;)) x exp(>" Achi(x)) (5.3)

pd(x,

Here A; encodes the difference between two Networks for factor f;.

Density Ratio

@) = N:(lg)exp(zt: AAi(x)) (5.4)

Here A; encodes the difference between two Networks for factor fi. N(6)
is a normalization term.
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Direct modeling the differential networks Ill: Density Ratio

Density Ratio for Markov Random Field

p(x) = pa(x)r(x; 0)

KL[pc||p] = Const. — /pc(x) log r(x; 6)dx. (5:5)

ST RPN TN VETAR ENTTLNOIOLNIEIN Joint Gaussian Graphical Model Series — VII August 18th, 2017 30/ 33



Summary

@ We introduce the multi-task sGGMs estimators.

@ We introduce the multi-task sGGMs estimators, which directly model
the commonalities and differences.

@ We introduce the multi-task sGGMs estimators, which directly model
the differences.
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Outline

© Notation

© Review

© The metrics for evaluating an estimator
@ Statistical Convergence Rate
© Optimization Convergence Rate

@ Computational Complexity
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Notation
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Notation

X The data matrix

> The covariance matrix.

Q The precision matrix.

p The number of features.

n The number of samples in the data matrix.

s The number of non-zero entries in the precision matrix.
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Review
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Review from last talk

@ We introduce different sGGM estimators and their solution.
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Review from last talk

@ We introduce different sGGM estimators and their solution.

@ We briefly introduce the three metrics used in evaluating an estimator.
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Review from last talk

@ We introduce different sGGM estimators and their solution.
@ We briefly introduce the three metrics used in evaluating an estimator.

@ We introduce different multi-task sGGMs estimators and their
optimization challenges.
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The metrics for evaluating an estimator J
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Motivation |: Select a proper estimator

@ There may be a lot of similar estimators.

%

oa
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Motivation |: Select a proper estimator

@ There may be a lot of similar estimators.

@ You need to decide which one to use.

%

oa
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Motivation |: Select a proper estimator

@ There may be a lot of similar estimators.
@ You need to decide which one to use.

@ You need some metrics to make the decision.

<5

oa
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Motivation |l: Evaluate a novel method

@ You may come out a new estimator.
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Motivation |l: Evaluate a novel method

@ You may come out a new estimator.

@ You want to know whether this novel estimator is no worse than the
previous ones.
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Motivation |l: Evaluate a novel method

@ You may come out a new estimator.

@ You want to know whether this novel estimator is no worse than the
previous ones.

@ Then you need some metrics to evaluate the estimator.
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Background: Two major properties

@ Two major properties: Accuracy and Speed.
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Background: Two major properties

@ Two major properties: Accuracy and Speed.
@ Accuracy:

» Statistical Convergence rate
» how close to the Truth
» Statisticians
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Background: Two major properties

@ Two major properties: Accuracy and Speed.
@ Accuracy:

» Statistical Convergence rate
» how close to the Truth
» Statisticians
@ Speed:
» Optimization convergence rate
» Optimization researchers
» Computational complexity
» Computer Scientists
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Statistical Convergence Rate
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Statistical Convergence Rate : Definition

@ The task for an estimator is parameter estimation.
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Statistical Convergence Rate : Definition

@ The task for an estimator is parameter estimation.

@ Suppose the parameter you need to estimate is 6, the truth is 6*
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Statistical Convergence Rate : Definition

@ The task for an estimator is parameter estimation.
@ Suppose the parameter you need to estimate is 6, the truth is 6*
° ||0—0"]| or R(O—0%)
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A simple example: Estimate the mean

On the whiteboard.
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

arg;ninR(G) (4.1)

-~

Subject to: R*(6 — B*(¢)) < An (4.2)

Here B*(gg) is a backward mapping for .
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin||6||1 (4.3)
0

Subject to: |8 — (XX + €)X Ty|loo < An (4.4)

v
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Hands on: Elementary Estimator for high-dimensional
linear regression

On the whiteboard.
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Hands on: DIFFEE

On the whiteboard.
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Conclusions

@ In high-dimensional setting, related to '°§p.

@ Equivalent estimators still have differences in constants or constraints
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Optimization Convergence Rate J

ST RUENT- AN METAR ENTTL MO ULIIESIN Joint Gaussian Graphical Model Series — VIII Sep 22nd, 2017 21 /30



Optimization Convergence Rate : Definition

@ Linearly Converge: [im =Ll P
k—00 [0k —L|
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Optimization Convergence Rate : Definition

@ Linearly Converge: kILn;O% = Lk
@ » Linearly, if ux € (0,1)
» Superlinearly, if ux — 0 when k — oc.
» Sublinearly, if ux — 1 when k — oo
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Optimization Convergence Rate : Definition

@ Linearly Converge: kILn;O% = Lk
@ » Linearly, if ux € (0,1)
» Superlinearly, if ux — 0 when k — oc.
» Sublinearly, if ux — 1 when k — oo

lim X1 —L]| >0
k—oo k=L ’

@ Higher order:
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Optimization Convergence Rate : Definition

Linearly Converge: lim =Ll P
k—00 [0k —L|

@ » Linearly, if ux € (0,1)
» Superlinearly, if ux — 0 when k — oc.
> Sublinearly, if gx — 1 when k — o0
s Xk —L
k||_>moo eIl 0.
Closed form solution

Higher order:
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Optimization Convergence Rate : Definition

Linearly Converge: lim Orri=tl P
k—00 [0k —L|

@ » Linearly, if ux € (0,1)
» Superlinearly, if ux — 0 when k — oc.
> Sublinearly, if gx — 1 when k — o0
s Xk —L
k||_>moo eIl 0.
Closed form solution

Higher order:

Closed form > Higher order > linear
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Optimization Convergence Rate: Basic Results

@ Gradient Descent based method: Linear
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Optimization Convergence Rate: Basic Results

@ Gradient Descent based method: Linear

@ » gradient descent
» SGD
» ADMM / proximal gradient descent
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Optimization Convergence Rate: Basic Results

@ Gradient Descent based method: Linear

@ » gradient descent
» SGD
» ADMM / proximal gradient descent

@ Newton method based method: Quadratic
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Optimization Convergence Rate: Basic Results

Gradient Descent based method: Linear

» gradient descent
» SGD
» ADMM / proximal gradient descent

Newton method based method: Quadratic

Elementary Estimator: Closed form solution
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Optimization Convergence Rate: Different methods

Single sGGM Multiple sGGMs
Method: GlLasso | CLIME EEGM JGL | FASJEM
Rate of Convergence | Linear NA Closed form | Linear | Linear
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Computational Complexity
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Computational Complexity: Definition

@ Complexity of an algorithm is the amount of resources required for
running it.
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Computational Complexity: Definition

@ Complexity of an algorithm is the amount of resources required for
running it.

@ In machine learning, it is mainly related to n and p.
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Computational Complexity: Definition

@ Complexity of an algorithm is the amount of resources required for
running it.

@ In machine learning, it is mainly related to n and p.

@ Use big O notation
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Computational Complexity: how to calculate

@ Some cases:

Matrix Multiplication: O(np?)
» Matrix inversion O(p%)

» SVD inversion O(p?)

» soft-thresholding O(p?)

v
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Computational Complexity: how to calculate

@ Some cases:
» Matrix Multiplication: O(np?)
» Matrix inversion O(p%)
» SVD inversion O(p?)
» soft-thresholding O(p?)
@ How to calculate:
» Num of Iter x Computational complexity of each Iter
» Direct calculate e.g., Closed form solution
» Use existing method e.g., linear programming
» Special case: linear convergence.
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Computational Complexity: Different methods

Single sGGM Multiple sGGMs
Method: GLasso | CLIME | EEGM JGL FASJEM | SIMUL
Computational 5 5 5 3 5 4
Complexity O(Tp%) | O(p°) | O(p%) | O(Tp®) | O(Tp%) | O(K"p
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Summary

@ We introduce the statistical convergence rate.
@ We introduce the optimization convergence rate.

@ We introduce the computational complexity.
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