Fast and Scalable Joint Estimators for Learning Sparse Gaussian Graphical Models from Heterogeneous Data with Additional Knowledge

> Beilun Wang¹ Advisor: Yanjun Qi¹ Dissertation Committees: Mahmoody Mohammad (Committee Chair)¹ Xiaojin (Jerry) Zhu² Farzad Farnoud¹ Tingting Zhang¹

> > ¹University of Virginia ²University of Wisconsin–Madison

> > > August 24, 2018

Background

Background: Entity Graph

- Many applications need to know interactions among entities:
 - Gene Interactions
 - Brain connectivity

Background: Entity Graph

- Many applications need to know interactions among entities:
 - Gene Interactions
 - Brain connectivity
- Why to study the entity graph
 - Understanding
 - Diagnosis, e.g., marker
 - Treatment, e.g., drug development.

Background: What Type of Edges? Correlation to Conditional dependency

Background: What Type of Edges? Correlation to Conditional dependency

Background: What Type of Edges? Correlation to Conditional dependency

Background: How to Infer Entity Graph?

- To measure conditional dependency interactions physically.
- Largely unknown and hard to measure physically.

Background: How to Infer Entity Graph?

- To measure conditional dependency interactions physically.
- Largely unknown and hard to measure physically.
 - #Physical check for all possible conditional dependency edges = 2^p (binary experiments)
 - For example, p = 160 important regions in human brain
 - For example, *p* = 30000 genes in human cell

Background: How to Infer Entity Graph?

- To measure conditional dependency interactions physically.
- Largely unknown and hard to measure physically.
 - #Physical check for all possible conditional dependency edges = 2^p (binary experiments)
 - For example, p = 160 important regions in human brain
 - For example, *p* = 30000 genes in human cell
 - Much more than Trillions (2⁴⁰) of biological experiments

Background: Entity graphs from Observed Samples (Entity as Feature)

- Trillions of biological experiments ⇒ Data-driven approach
- Experiments (not physically check)
 - \Longrightarrow Data \Longrightarrow Entity Graph

Context/Task(1)

Background: Entity graphs from Observed Samples (Entity as Feature)

- Trillions of biological experiments ⇒ Data-driven approach
- Experiments (not physically check)
 Data => Entity Graph
- n experiments $\rightarrow n$ data samples
 - Each sample is a snapshot of all the entities.
 - Each sample has measurements of p features/entities.

Background: Entity graphs from Observed Samples (Entity as Feature)

- Trillions of biological experiments ⇒ Data-driven approach
- Experiments (not physically check)
 - \implies Data \implies Entity Graph
- *n* experiments → *n* data samples
 - Each sample is a snapshot of all the entities.
 - Each sample has measurements of p features/entities.
- *n* data samples is enough \rightarrow a well estimated entity graph of *p* when n >> p (low-dimensional).
- *p* > *n* (high-dimensional) needs novel approaches

Background: Entity graphs from Heterogeneous Data (Entity as Feature)

- Most applications have heterogeneous samples.
- For example:
 - Totally *n*tot data samples
 - From K different but related contexts, each has n_i data samples

Context/Task(1)

Context/Task(2)

Background: Entity graphs from Heterogeneous Data

Task I: Learning multiple related graphs

- Learning multiple related graphs
- E.g., TF-TF interactions
 - Three graphs are similar

Task II: Integrating additional knowledge

Integrating known knowledge in Learning multiple related graphs
 E.g., known knowledge in Brain Connection

^{12/108}

Task III: Learning sparse changes between two graphs

- A very interesting task:
 - Find differences in the brains of people with diseases, e.g. Autism, Alzheimer's
 - Use for understanding
 - Use for diagnosis

Notations

- $X^{(i)}$ *i*-th Data matrix.
- $\Sigma^{(i)}$ *i*-th Covariance matrix.
- $\Omega^{(i)}$ *i*-th Inverse of covariance matrix (precision matrix).
 - *p* The total number of feature variables.
- *n*_{tot} The total number of samples.
- X^{tot} the concatenation of all Data matrices.
- Σ^{tot} the concatenation of all Covariance matrices.
- Ω^{tot} the concatenation of all Inverse of covariance matrices (precision matrices).

$$W_{l}^{tot} (W_{l}^{(1)}, W_{l}^{(2)}, \dots, W_{l}^{(K)}) W_{S}^{tot} (W_{S}, W_{S}, \dots, W_{S})$$

Motivation

Motivation: More Num of features (p) to consider

Yeast gene: 6K
 ↓
 Human gene: 30K

 Words interaction, millions of words (p > 1,000,000)

Motivation: More num of tasks (K) to consider

ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human genome. *Nature*, 489(7414):57–74, 2012.

Motivation: Limitation I – Slow Computation

The best baseline of	Task I	Task II	Task III
Computational complexity	O(Kp ³) / iter	<i>O</i> (<i>K</i> ⁴ <i>p</i> ⁵)	<i>O</i> (<i>p</i> ³) / iter
Bottle neck	SVD	Linear program- ming	SVD

• If K = 91 and p = 30K

↓

The best	Task I	Task II	Task III
baseline of			
Time	3.5 days / iter	6 trillion years	1 hour/ iter

• Can we have a $O(p^2)$ method?

Motivation: Limitation II – No consideration of parallelization

Computer Clusters

• Reduce $O(p^2)$ to O(1).

Motivation: Limitation III: Lack of error bound analysis

- $||\hat{\theta} \theta^*||$
- Missing analysis under a high-dimensional setting (*p* ≥ *n*)
- No sacrifices of the accuracy from speeding-up and scaling-up the algorithm

Our Aim: Fast and Scalable estimators for three types of joint graphs estimation

- Fast and scalable estimators for the three tasks
- Parallelizable algorithms
- Integrating additional knowledge
- Sharp convergence rate

Solution for Limitations - Elementary Estimator

Background: summary of the previous optimization strategy

Elementary Estimator (EE) for joint sGGMs tasks

Elementary Estimator (EE): Step I – Backward mapping

- Backward mapping B^{*}(\$\overline{\phi}\$) of the parameter (Solution of Vanilla Maximum Likelihood Estimator (MLE))
- Vanilla MLE: $\operatorname{argmax} \mathcal{L}(\theta)$
 - Already close to true parameter
 - But without assumptions e.g., sparse
 - For instance, linear regression solution $(X^T X)^{-1} X^T Y$

Elementary Estimator: Step II – Optimization formulation

Elementary Estimator (EE)

$$\underset{\theta}{\operatorname{argmin}} \mathcal{R}(\theta) \tag{3.1}$$
Subject to: $\mathcal{R}^*(\theta - \mathcal{B}^*(\widehat{\phi})) \leq \lambda_n$

• Let $\mathcal{R}(\cdot) = \|\cdot\|_1$

$$\downarrow$$

$$\arg \min_{\theta} ||\theta||_{1}$$

$$(3.2)$$
Subject to: $||\theta - \mathcal{B}^{*}(\widehat{\phi})||_{\infty} \leq \lambda_{n}$

• Easy to prove the sharp convergence rate when \mathcal{R} and \mathcal{B}^* satisfy certain conditions.

EE-Benefit: Fast and scalable solution

- A soft-thresholding operator (closed form)
- Closed form & O(p²)
- Easy to parallelize in GPU

$$\hat{\theta} = S_{\lambda_n}(\mathcal{B}^*(\phi))$$
$$[S_{\lambda}(A)]_{ij} = \operatorname{sign}(A_{ij}) \max(|A_{ij}| - \lambda, 0)$$
(3.3)

Element-wise

 $\Sigma = \operatorname{Cov}(\mathbf{X}) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix} \\ \Sigma = \operatorname{Cov}(\mathbf{X}) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix} \\ \Sigma = \operatorname{Cov}(\mathbf{X}) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$

Apply same operator Independent calculation

Background: sparse Gaussian Graphical Model (sGGM) to derive Conditional Independence Graph from data

EE-GM: Elementary Estimator for sGGM

- Vanilla MLE: $\underset{\Omega}{\operatorname{argmin}} \log(\operatorname{det}(\Omega)) + < \Omega, \Sigma >$
- Backward mapping of Ω is Σ^{-1}
- Not invertible when $p \ge n$

EE-GM: Elementary Estimator for sGGM

- Vanilla MLE: $\underset{\Omega}{\operatorname{argmin}} \log(\det(\Omega)) + < \Omega, \Sigma >$
- Backward mapping of Ω is Σ^{-1}
- Not invertible when $p \ge n$
- Need apporximated backward mapping
 - proxy backward mapping $\widehat{\theta}_n \approx \mathcal{B}^*(\widehat{\phi})$
 - In sGGM, $\hat{\theta}_n = [T_v(\hat{\Sigma})]^{-1}$

EE-GM: Elementary Estimator for sGGM

EE-Benefit: Easy to prove error bound

• Error bound:

$$egin{aligned} ||\widehat{ heta} - heta^*||_\infty &\leq 2\lambda_n \ ||\widehat{ heta} - heta^*||_F &\leq 4\sqrt{s}\lambda_n \ ||\widehat{ heta} - heta^*||_1 &\leq 8s\lambda_n \end{aligned}$$

• Condition:

$$\lambda_n \ge ||\widehat{\theta}_n - \theta^*||_{\infty} \qquad (3.7)$$

(3.6)

• Constant: *s* is the num of non-zero entries.

Method I: FASJEM

Outline

- Background
- Motivation
 - Solution for Limitations Elementary Estimator
- Method I: FASJEM
 - Background
 - Method
 - Results
- 5 Method II: JEEK
 - Background
 - Method
 - Results
 - Method III: DIFFEE
 - Method
 - Results
- Discussion
 - Questions from Proposal
 - Future works

Task I: Learning multiple related graphs

- Learning multiple related graphs
- E.g., TF-TF interactions
 - Three graphs are similar

Background: Multi-task sGGMs

A pipeline to infer Multiple Related Graphs from heterogeneous datasets X⁽¹⁾,...X^{(K)1}.

¹ X^{tot} : the concatenation of $(X^{(1)}, X^{(2)}, \dots, X^{(K)})$. Σ^{tot} : the concatenation of $(\Sigma^{(1)}, \Sigma^{(2)}, \dots, \Sigma^{(K)})$. Ω^{tot} : the concatenation of $(\Omega^{(1)}, \Omega^{(2)}, \dots, \Omega^{(K)})$.

Background: Joint Graphical Lasso

Outline

Background

Motivation

Solution for Limitations - Elementary Estimator

Method I: FASJEM

- Background
- Method
- Results
- 5 Method II: JEEK
 - Background
 - Method
 - Results
 - Method III: DIFFEE
 - Method
 - Results
- Discussion
 - Questions from Proposal
 - Future works

Enforcing relatedness of multiple graphs through Regularization: FASJEM-norm

Elementary Estimator (EE)

$$\underset{\theta}{\operatorname{argmin}} \mathcal{R}(\theta) \tag{4.5}$$
Subject to: $\mathcal{R}^*(\theta - \mathcal{B}^*(\widehat{\phi})) \leq \lambda_n$

EE	$\mathcal{R}(\cdot)$	θ	$\widehat{\theta}_n$	$\mathcal{R}^*(\cdot)$
EE-sGGM	• 1	Ω	$[T_{\nu}(\widehat{\Sigma})]^{-1}$	$\ \cdot\ _{\infty}$
FASJEM	$\boxed{ \cdot _1 + \mathcal{R}'}$	Ω^{tot}	$inv[T_v(\widehat{\Sigma}^{tot})]$	$ max(\cdot _\infty,\mathcal{R}'^*)$

FASJEM

$$\begin{aligned} \underset{\Omega_{tot}}{\operatorname{argmin}} & ||\Omega_{tot}||_{1} + \mathcal{R}'(\Omega_{tot}) \\ s.t.||\Omega_{tot} - \operatorname{inv}(\mathcal{T}_{v}(\widehat{\Sigma}_{tot}))||_{\infty} \leq \lambda_{n} \\ \mathcal{R}'^{*}(\Omega_{tot} - \operatorname{inv}(\mathcal{T}_{v}(\widehat{\Sigma}_{tot}))) \leq \lambda_{n} \end{aligned}$$

$$(4.6)$$

FASJEM: Variations

• FASJEM-G:

$$\mathcal{R}'(\cdot) = ||\cdot||_{\mathcal{G},2}$$

$$||\Omega_{tot}||_{\mathcal{G},2} = \sum_{j=1}^{p} \sum_{k=1}^{p} ||(\Omega_{j,k}^{(1)}, \Omega_{j,k}^{(2)}, \dots, \Omega_{j,k}^{(i)}, \dots, \Omega_{j,k}^{(K)})||_{2}$$
(4.7)

• FASJEM-I:

$$\mathcal{R}'(\cdot) = ||\cdot||_{\mathcal{G},\infty}$$
$$||\Omega_{tot}||_{\mathcal{G},\infty} = \sum_{j=1}^{p} \sum_{k=1}^{p} ||(\Omega_{j,k}^{(1)}, \Omega_{j,k}^{(2)}, \dots, \Omega_{j,k}^{(i)}, \dots, \Omega_{j,k}^{(K)})||_{\infty}$$
(4.8)

FASJEM: Optimization Solution

FASJEM: Optimization Solution

FASJEM: Optimization Solution – Proximal algorithm

• FASJEM solution:

- In each iteration, a proximal operator
- Element-wise operator, O(p²)

$$prox_{\gamma||\cdot||_{1}}(x) = \begin{cases} x_{j,k}^{(i)} - \gamma, x_{j,k}^{(i)} > \gamma \\ 0, |x_{j,k}^{(i)}| \le \gamma \\ x_{j,k}^{(i)} + \gamma, x_{j,k}^{(i)} < -\gamma \\ \end{cases}$$
(4.9)

$$\begin{aligned} & \mathsf{prox}_{\gamma||\cdot||_1}(x) \\ &= \max((x_{j,k}^{(i)} - \gamma), 0) \ (4.10) \\ &+ \min(0, (x_{j,k}^{(i)} + \gamma)) \end{aligned}$$

FASJEM: Optimization Solution – Proximal algorithm

FASJEM: Computational Complexity

The best baseline of	Task I	Task II	Task III
Computational complexity	O(Kp ³) / iter	<i>O</i> (<i>K</i> ⁴ <i>p</i> ⁵)	<i>O</i> (<i>p</i> ³) / iter
Bottle neck	SVD	Linear program- ming	SVD
Our ap- proach	FASJEM		
Computational complexity	O(Kp ²) / iter		
Parallelization	O(K) / iter		

	EE	$\mathcal{R}(\cdot)$	θ	$\widehat{ heta}_n$	$\mathcal{R}^*(\cdot)$
	EE-sGGM	• 1	Ω	$[T_{\nu}(\widehat{\Sigma})]^{-1}$	$ \cdot _{\infty}$
Task I	FASJEM	$ \cdot _1 + \mathcal{R}'$	Ω^{tot}	$inv[T_v(\widehat{\Sigma}^{tot})]$	$max(\cdot _\infty,\mathcal{R}'^*)$
Task II					
Task III					

Outline

- Background
- Motivation

Solution for Limitations - Elementary Estimator

Method I: FASJEM

- Background
- Method
- Results
- Method II: JEEK
 - Background
 - Method
 - Results
- Method III: DIFFEE
 - Method
 - Results
- Discussion
 - Questions from Proposal
 - Future works

Results: Theoretical Analysis

•
$$p' = \max(Kp, n_{tot})$$

• Error Bound: $||\widehat{\Omega}_{tot} - \Omega^*_{tot}||_F \le 32 \frac{4\kappa_1 a}{\kappa_2} \sqrt{\frac{s \log p'}{n_{tot}}}$

Multi-task:	K Single-task:
$O(\frac{\log(Kp)}{n_{tot}})$	$O(\frac{\log p}{n_i}))$

• By assuming $n_i = \frac{n_{tot}}{K}$:

Results: Theoretical Analysis

•
$$p' = \max(Kp, n_{tot})$$

• Error Bound: $||\widehat{\Omega}_{tot} - \Omega^*_{tot}||_F \le 32 \frac{4\kappa_1 a}{\kappa_2} \sqrt{\frac{s \log p'}{n_{tot}}}$

Multi-task:	K Single-task:
$O(\frac{\log(Kp)}{n_{tot}})$	$O(\frac{\log p}{n_i}))$

By assuming n_i = n_{tot}:
We can conclude that log(Kp)/n_{tot} < K log p/n_{tot}

Results: Theoretical Analysis

•
$$p' = \max(Kp, n_{tot})$$

• Error Bound: $||\widehat{\Omega}_{tot} - \Omega^*_{tot}||_F \le 32 \frac{4\kappa_1 a}{\kappa_2} \sqrt{\frac{s \log p'}{n_{tot}}}$

Multi-task:	K Single-task:
$O(\frac{\log(Kp)}{n_{tot}})$	$O(\frac{\log p}{n_i}))$

- By assuming $n_i = \frac{n_{tot}}{K}$:
- We can conclude that $\frac{\log(Kp)}{n_{tot}} < K \frac{\log p}{n_{tot}}$
- This indicates that the multi-task estimator is better!!!

Results: Synthetic Data generation process

Results: Synthetic Data Results

Results: Real-world Data Results – Number of Matched Edges versus the Existing Domain Databases

 Validation by counting the overlapped interactions according to the existing bio-databases (MInact)

Method II: JEEK

Outline

- Background
- Motivation
- Solution for Limitations Elementary Estimator

- 4 Method I: FASJEM
 - Background
 - Method
 - Results
- Method II: JEEK
 - Background
 - Method
 - Results
- Method III: DIFFEE
 - Method
 - Results
- Discussion
 - Questions from Proposal
 - Future works

Task II: Integrating additional knowledge

Integrating known knowledge in Learning multiple related graphs
 E.g., known knowledge in Brain Connection

Solution: Using Knowledge as Weight in Regularization (KW-norm)

• Integrating additional knowledge through a novel regularization function $\mathcal{R}(\cdot)$

KW-norm

$$\mathcal{R}(\{\Omega^{(i)}\}) = \sum_{i=1}^{K} ||W_{i}^{(i)} \circ \Omega_{i}^{(i)}||_{1} + \sum_{i=1}^{K} ||W_{S} \circ \Omega_{S}||_{1}$$
(5.1)

•
$$\Omega^{(i)} = \Omega^{(i)}_I + \Omega_S$$

- $\{W_l^{(i)}\}$: weights describing knowledge of each individual graph.
- W_S : weights describing knowledge of the shared graph.

Background: Shared and Task-Specific Subgraph Representation

Know both

- House keeping interactions
- Context-specific networks

Solution: Using Knowledge as Weight in Regularization (KW-norm)

Use tot notation

KW-norm

$$\mathcal{R}(\Omega^{tot}) = ||W_I^{tot} \circ \Omega_I^{tot}||_1 + ||W_S^{tot} \circ \Omega_S^{tot}||_1$$
(5.2)

- W_l^{tot} : weights describing knowledge of each individual graph.
- W_S^{tot} : weights describing knowledge of the shared graph.

Solution: Using Knowledge as Weight in Regularization (KW-norm)

Use tot notation

KW-norm

$$\mathcal{R}(\Omega^{tot}) = || \textit{W}_{\textit{I}}^{tot} \circ \Omega_{\textit{I}}^{tot} ||_1 + || \textit{W}_{S}^{tot} \circ \Omega_{S}^{tot} ||_1$$

- W_l^{tot} : weights describing knowledge of each individual graph.
- W_S^{tot} : weights describing knowledge of the shared graph.
- No need to design knowledge-specific optimization
- KW-norm is flexible.

(5.2)

Example I: KW-norm representing the edge-level knowledge

• e.g., Spatial distance among brain regions;

Example II: KW-norm describing the node-level knowledge

• e.g., X₂ is a known hub node;

Background: SIMULE

• Decompose
$$\Omega^{(i)} = \Omega_I^{(i)} + \Omega_S$$

• An ℓ_1 minimization approach

$$\widehat{\Omega}_{I}^{(1)}, \widehat{\Omega}_{I}^{(2)}, \dots, \widehat{\Omega}_{I}^{(K)}, \widehat{\Omega}_{S} = \underset{\Omega_{I}^{(i)}, \Omega_{S}}{\operatorname{argmin}} \sum_{i} ||\Omega_{I}^{(i)}||_{1} + \epsilon K ||\Omega_{S}||_{1}$$

Subject to: $||\Sigma^{(i)}(\Omega_I^{(i)} + \Omega_S) - I||_{\infty} \le \lambda_n, \ i = 1, \dots, K$

Background: WSIMULE: A weighted SIMULE estimator

SIMULE

S

$$\widehat{\Omega}_{I}^{(1)}, \widehat{\Omega}_{I}^{(2)}, \dots, \widehat{\Omega}_{I}^{(K)}, \widehat{\Omega}_{S} = \underset{\Omega_{I}^{(i)}, \Omega_{S}}{\operatorname{argmin}} \sum_{i} ||\Omega_{I}^{(i)}||_{1} + \epsilon K ||\Omega_{S}||_{1}$$

Subject to: $||\Sigma^{(i)}(\Omega_{I}^{(i)} + \Omega_{S}) - I||_{\infty} \leq \lambda_{n}, \ i = 1, \dots, K$

• ADD $W_I^{(i)}, W_S$ \Downarrow

W-SIMULE

$$\widehat{\Omega}_{I}^{(1)}, ..., \widehat{\Omega}_{I}^{(K)}, \widehat{\Omega}_{S} = \sum_{i \quad \Omega_{I}^{(i)}, \Omega_{S}} \underset{I}{\operatorname{argmin}} || W_{I}^{(i)} \circ \Omega_{I}^{(i)} ||_{1} + K || W_{S} \circ \Omega_{S} ||_{1}$$
Subject to: $|| \Sigma^{(i)} (\Omega_{I}^{(i)} + \Omega_{S}) - I ||_{\infty} \leq \lambda, i = 1, ..., K.$
(5.3)

Outline

- Background
- Motivation
- Solution for Limitations Elementary Estimator

- 4 Method I: FASJEM
 - Background
 - Method
 - Results
 - Method II: JEEK
 - Background
 - Method
 - Results
 - Method III: DIFFEE
 - Method
 - Results
- Discussion
 - Questions from Proposal
 - Future works

Proposed Method: Combine EE and KW-norm

Elementary Estimator

$$\underset{\theta}{\operatorname{argmin}} \mathcal{R}(\theta)$$
(5.4)
Subject to: $\mathcal{R}^*(\theta - \mathcal{B}^*(\widehat{\phi})) \leq \lambda_n$

+

KW-norm $\mathcal{R}(\Omega^{tot}) = ||W_{I}^{tot} \circ \Omega_{I}^{tot}||_{1} + ||W_{S}^{tot} \circ \Omega_{S}^{tot}||_{1}$ (5.5)
Proposed Method: Joint Elementary Estimator incorporating additional Knowledge (JEEK)

EE	$\mathcal{R}(\cdot)$	θ	$\widehat{\theta}_n$	$\mathcal{R}^*(\cdot)$
EE-sGGM	• 1	Ω	$[T_{v}(\widehat{\Sigma})]^{-1}$	$\ \cdot\ _{\infty}$
JEEK	kw-norm	Ω^{tot}	$inv[T_v(\widehat{\Sigma}^{tot})]$	kw-dual

JEEK

$$\begin{aligned} \underset{\Omega_{l}^{tot},\Omega_{S}^{tot}}{\operatorname{argmin}} & || W_{l}^{tot} \circ \Omega_{l}^{tot} ||_{1} + || W_{S}^{tot} \circ \Omega_{S}^{tot} || \\ \text{Subject to: } & || W_{l}^{tot} \circ (\Omega^{tot} - inv(T_{v}(\widehat{\Sigma}^{tot}))) ||_{\infty} \leq \lambda_{n} \\ & || W_{S}^{tot} \circ (\Omega^{tot} - inv(T_{v}(\widehat{\Sigma}^{tot}))) ||_{\infty} \leq \lambda_{n} \\ & \Omega^{tot} = \Omega_{S}^{tot} + \Omega_{l}^{tot} \end{aligned}$$
(5.6)

Proposed method: JEEK – Solution

 Fast and Scalable solution² – p² small linear programming subproblems with only K + 1 variables:

$$\begin{aligned} \underset{a_i,b}{\operatorname{argmin}} &\sum_{i} |w_i a_i| + \mathcal{K} |w_s b| \\ \text{Subject to: } |a_i + b - c_i| \leq \frac{\lambda_n}{\min(w_i, w_s)}, \\ &i = 1, \dots, \mathcal{K} \end{aligned} \tag{5.}$$

$$\begin{split} ^{2}a_{i} &:= \Omega_{l \ j,k}^{(i)} \text{ (the } \{j,k\}\text{-th entry of } \Omega^{(i)} \\ b &:= \Omega_{Sj,k} \\ c_{i} &= [T_{v}(\widehat{\Sigma}^{(i)})]_{j,k}^{-1}. \\ W_{j,k}^{(i)} &= w_{i} \text{ and } W_{j,k}^{S} = w_{s}. \end{split}$$

- Rich and flexible for integrating additional knowledge
 - e.g., spatial, anatomy, hub, pathway, location, known edges;

- Rich and flexible for integrating additional knowledge
 - e.g., spatial, anatomy, hub, pathway, location, known edges;
- Parallelizable optimization with small sub-problems.

- Rich and flexible for integrating additional knowledge
 - e.g., spatial, anatomy, hub, pathway, location, known edges;
- Parallelizable optimization with small sub-problems.
- Theoretical guaranteed

JEEK: Computational Complexity

The best baseline of	Task I	Task II	Task III
Computational complexity	O(Kp ³) / iter	$O(K^4 p^5)$	<i>O</i> (<i>p</i> ³) / iter
Bottle neck	SVD	Linear program- ming	SVD
Our ap- proach	FASJEM	JEEK	
Computational complexity	$O(Kp^2)$ / iter	$O(K^4 p^2)$	
Parallelization	O(K) / iter	$O(K^4)$	

	EE	$\mathcal{R}(\cdot)$	θ	$\widehat{\theta}_n$	$\mathcal{R}^*(\cdot)$
	EE-sGGM	• 1	Ω	$[T_{\nu}(\widehat{\Sigma})]^{-1}$	$ \cdot _{\infty}$
Task I	FASJEM	$ \cdot _1 + \mathcal{R}'$	Ω^{tot}	$inv[T_v(\widehat{\Sigma}^{tot})]$	$max(\cdot _\infty,\mathcal{R}'^*)$
Task II	JEEK	kw-norm	Ω^{tot}	$inv[T_v(\widehat{\Sigma}^{tot})]$	kw-dual
Task III					

Outline

- Background
- Motivation
- Solution for Limitations Elementary Estimator
- 4 Method I: FASJEM
 - Background
 - Method
 - Results
 - Method II: JEEK
 - Background
 - Method
 - Results
 - Method III: DIFFEE
 - Method
 - Results
- Discussior
 - Questions from Proposal
 - Future works

Theoretical Results

Sharp convergence rate as the state-of-art

$$\begin{split} ||\widehat{\Omega}^{tot} - \Omega^{tot^*}||_{F} &\leq 4\sqrt{k_{i} + k_{s}}\lambda_{n} \\ \max(||W_{l}^{tot} \circ (\widehat{\Omega}^{tot} - \Omega^{tot^*})||_{\infty}, ||W_{S}^{tot} \circ (\widehat{\Omega}^{tot} - \Omega^{tot^*}||_{\infty}) \leq 2\lambda_{n} \\ ||W_{l}^{tot} \circ (\widehat{\Omega}_{l}^{tot} - \Omega_{l}^{tot^*})||_{1} + ||W_{S}^{tot} \circ (\widehat{\Omega}_{S}^{tot} - \Omega_{S}^{tot^*})||_{1} \leq 8(k_{i} + k_{s})\lambda_{n} \end{split}$$
(5.8)

Where a, c, κ_1 and κ_2 are constants

$$||\widehat{\Omega}^{tot} - \Omega^{tot^*}||_{F} \leq \frac{16\kappa_1 a \max_{j,k}(W_l^{tot}_{j,k}, W_S^{tot}_{j,k})}{\kappa_2} \sqrt{\frac{(k_i + k_s)\log(Kp)}{n_{tot}}}$$
(5.9)

Empirical Results on Multiple Synthetic Datasets

- JEEK outperforms the speed of the state-of arts significantly faster (~ 5000× improvement);
- JEEK obtains better AUC as the state-of-the-art;
- JEEK obtains better AUC than JEEK-NK (no additional knowledge).

Empirical Results on Two Real-world Datasets

- (a). On real-world gene expression data about leukemia cells vs. normal blood cells. Used multiple types of additional knowledge;
- (b). On real-world Brain fMRI dataset: ABIDE. Using LDA as a downstream classification for evaluating JEEK vs. baselines.

Method III: DIFFEE

Outline

- Background
- Motivation
- Solution for Limitations Elementary Estimator
- 4 Method I: FASJEM
 - Background
 - Method
 - Results
- 5 Method II: JEEK
 - Background
 - Method
 - Results

Method III: DIFFEE

- Method
- Results
- Discussion
 - Questions from Proposal
 - Future works

Takes III: Learning sparse changes between two graphs

• Each graph may be dense or sparse, differential net is sparse

• Two cases : d (disease) & c (control)

. . .

Proposed Method III: DIFFEE

Elementary Estimator (EE)

$$rgmin_{ heta} \mathcal{R}(heta)$$

Subject to: $\mathcal{R}^*(heta - \mathcal{B}^*(\widehat{\phi})) \leq \lambda_n$

DIFFEE

$$\begin{aligned} & \underset{\Delta}{\operatorname{argmin}} ||\Delta||_{1} \\ & \text{Subject to: } ||\Delta - \left([\mathcal{T}_{\nu}(\widehat{\Sigma}_{d})]^{-1} - [\mathcal{T}_{\nu}(\widehat{\Sigma}_{c})]^{-1} \right) ||_{\infty} \leq \lambda_{n} \end{aligned} \tag{6.4}$$

75/108

(6.3)

DIFFEE: Optimization Solution

Close form

$$\widehat{\Delta} = S_{\lambda_n}([T_\nu(\widehat{\Sigma}_d)]^{-1} - [T_\nu(\widehat{\Sigma}_c)]^{-1})$$
(6.5)

$$[S_{\lambda}(A)]_{ij} = \operatorname{sign}(A_{ij}) \max(|A_{ij}| - \lambda, 0)$$
(6.6)

• GPU-parallelizable

DIFFEE: Computational Complexity

The best baseline of	Task I	Task II	Task III
Computational complexity	$O(Kp^3)$ / iter	<i>O</i> (<i>K</i> ⁴ <i>p</i> ⁵)	<i>O</i> (<i>p</i> ³) / iter
Bottle neck	SVD	Linear program- ming	SVD
Our ap- proach	FASJEM	JEEK	DIFFEE
Computational complexity	O(Kp ²) / iter	$O(K^4 p^2)$	<i>O</i> (<i>p</i> ³)
Parallelization	O(K) / iter	$O(K^4)$	$O(p^3)$

	EE	$\mathcal{R}(\cdot)$	θ	$\widehat{\theta}_n$	$\mathcal{R}^*(\cdot)$
	EE-sGGM	• 1	Ω	$[T_{v}(\widehat{\Sigma})]^{-1}$	$ \cdot _{\infty}$
Task I	FASJEM	$ \cdot _1+\mathcal{R}'$	Ω^{tot}	$inv[T_v(\widehat{\Sigma}^{tot})]$	$max(\cdot _\infty,\mathcal{R}'^*)$
Task II	JEEK	kw-norm	Ω^{tot}	$inv[T_v(\widehat{\Sigma}^{tot})]$	kw-dual
Task III	DIFFEE	• 1	Δ	$[T_{\nu}(\widehat{\Sigma}_d)]^{-1} \\ -[T_{\nu}(\widehat{\Sigma}_c)]^{-1}$	$\ \cdot\ _{\infty}$

Outline

- Background
- Motivation
- Solution for Limitations Elementary Estimator

79/108

- 4 Method I: FASJEM
 - Background
 - Method
 - Results
- 5 Method II: JEEK
 - Background
 - Method
 - Results

Method III: DIFFEE

- Method
- Results
- 7 Discu
 - Discussion
 - Questions from Proposal
 - Future works

Results: Theoretical Analysis

• Sharp convergence rate as the state-of-art

$$egin{aligned} ||\widehat{\Delta} - \Delta^*||_\infty &\leq rac{16\kappa_1 a}{\kappa_2} \sqrt{rac{\log p}{\min(n_c, n_d)}} \ ||\widehat{\Delta} - \Delta^*||_F &\leq rac{32\kappa_1 a}{\kappa_2} \sqrt{rac{k\log p}{\min(n_c, n_d)}} \ ||\widehat{\Delta} - \Delta^*||_1 &\leq rac{64\kappa_1 a}{\kappa_2} k \sqrt{rac{\log p}{\min(n_c, n_d)}} \end{aligned}$$

(6.7)

Results: Synthetic Data Results

Results: Synthetic Data Results

- Apply to Brain image data (fMRI)
- Use the estimated different network in LDA
- Compare the accuracy with the state-of-art methods

Method	DIFFEE	FusedGLasso	Diff-CLIME
Accuracy (%)	57.58%	56.90%	53.79%

Discussion

Outline

- Background
- Motivation
- Solution for Limitations Elementary Estimator
- 4 Method I: FASJEM
 - Background
 - Method
 - Results
- 5 Method II: JEEK
 - Background
 - Method
 - Results
 - Method III: DIFFEE
 - Method
 - Results
- 7

Discussion

- Questions from Proposal
- Future works

Support Analysis Results

• DIFFEE as an example

Lemma

$$||\Delta^* - \mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)||_\infty \leq \lambda_n$$

(7.1)

Support Analysis Results

• DIFFEE as an example

Lemma $||\Delta^* - \mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)||_{\infty} \le \lambda_n \quad (7.1)$ • U Corollary $\Delta_{i,j}^* = 0 \Longrightarrow |\mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)_{i,j}| \le \lambda_n \quad (7.2)$

$$\widehat{\Delta} = S_{\lambda_n}(\mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)) \tag{7.3}$$

Support Analysis Results

• DIFFEE as an example

Lemma $||\Delta^* - \mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)||_{\infty} \le \lambda_n \quad (7.1)$ • U Corollary $\Delta_{i,j}^* = 0 \Longrightarrow |\mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)_{i,j}| \le \lambda_n \quad (7.2)$

$$\widehat{\Delta} = S_{\lambda_n}(\mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c))$$
(7.3)

Result

$$\Delta_{i,j}^* = \mathbf{0} \Longrightarrow \widehat{\Delta}_{i,j} = \mathbf{0}$$
(7.4)

• $supp(\widehat{\Delta}) \subseteq supp(\Delta^*)$

Support Analysis Result

• Additional Assumption:

Assumption

$$\min_{s \in supp(\Delta^*)} |\Delta_s^*| \ge 3||\Delta^* - \mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)||_{\infty}$$
(7.5)

Support Analysis Result

• Additional Assumption:

Assumption $\min_{s \in supp(\Delta^*)} |\Delta_s^*| \ge 3||\Delta^* - \mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)||_{\infty}$ (7.5)

۲

$supp(\Delta^*) \subseteq supp(\widehat{\Delta})$ (7.6)

Support Analysis Result

• Additional Assumption:

Assumption

$$\min_{s \in supp(\Delta^*)} |\Delta_s^*| \ge 3 ||\Delta^* - \mathcal{B}^*(\widehat{\Sigma}_d, \widehat{\Sigma}_c)||_{\infty}$$
(7.5)

٥

$$supp(\Delta^*) \subseteq supp(\widehat{\Delta})$$
 (7.6)

• Combine the above results

$$supp(\Delta^*) = supp(\widehat{\Delta})$$
 (7.7)

Standardized Covariance Matrices

- Real world: Different tasks \rightarrow different value scale
 - e.g., fMRI vs RNA squencing
- Problem: hard to choose λ_n in different scales

Standardized Covariance Matrices

- Real world: Different tasks \rightarrow different value scale
 - e.g., fMRI vs RNA squencing
- Problem: hard to choose λ_n in different scales
- Solution: Covariance matrices \implies Correlation matrices

Theorem

The inverse of Correlation matrices have the same support set as the inverse of covariance matrices

- Nonparanormal extensions Relax the Gaussian Assumption
- Added in all the packages

- linearly converge method: $T = O(n \log(\frac{1}{TOL}))$
- TOL is the error bound

- linearly converge method: $T = O(n \log(\frac{1}{TOL}))$
- TOL is the error bound
- FASJEM error bound: $O(\frac{\log(Kp)}{n_{tot}})$
- linearly converge method: $T = O(n \log(\frac{1}{TOL}))$
- TOL is the error bound
- FASJEM error bound: $O(\frac{\log(Kp)}{n_{tot}})$
- $T = O(\frac{n_{tot} \log(n_{tot})}{\log(\log(Kp))})$

- proxy backward mapping still $O(p^3)$
- In practice, fast in our three tasks
- Thanks to excellent low-level implementation
- Not well performed in low-dimensional case
- $p' = \max(n, p)$

Trade-off

Outline

- Background
- Motivation
- Solution for Limitations Elementary Estimator

92/108

- 4 Method I: FASJEM
 - Background
 - Method
 - Results
- 5 Method II: JEEK
 - Background
 - Method
 - Results
 - Method III: DIFFEE
 - Method
 - Results
- 7

Discussion

- Questions from Proposal
- Future works

$\bullet\,$ Revise the ℓ_1 norm in FASJEM to a KW-norm

KW-norm for FASJEM

$$\mathcal{R}(\{\Omega^{(i)}\}) = \sum_{i=1}^{K} || \boldsymbol{W}^{(i)} \circ \Omega^{(i)} ||_{1}$$

= $|| \boldsymbol{W}^{tot} \circ \Omega^{tot} ||_{1}$ (7.8)

• $\{W^{(i)}\}$: weights describing knowledge of each graph.

Future work: FASJEM with additional knowledge – FASJEM-K

FASJEM-K

$$\begin{aligned} \underset{\Omega_{tot}}{\operatorname{argmin}} &|| \boldsymbol{W}_{tot} \circ \Omega_{tot} ||_{1} + \epsilon \mathcal{R}'(\Omega_{tot}) \\ \boldsymbol{s}. \boldsymbol{t}. || \boldsymbol{W}_{tot} \circ (\Omega_{tot} - \operatorname{inv}(\mathcal{T}_{v}(\widehat{\Sigma}_{tot}))) ||_{\infty} \leq \lambda_{n} \end{aligned}$$

$$\begin{aligned} \mathcal{R}'^{*}(\Omega_{tot} - \operatorname{inv}(\mathcal{T}_{v}(\widehat{\Sigma}_{tot}))) \leq \epsilon \lambda_{n} \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

KW-norm for Differential Network: kEV-norm

 Integrating both edge-level and node-level additional knowledge through a novel regularization function R(·)

kEV-norm

$$\mathcal{R}(\Delta) = || W_{\mathcal{E}} \circ \Delta_{\mathcal{E} \setminus \mathcal{G}_{\mathcal{V}}} ||_1 + \epsilon || \Delta_{\mathcal{G}_{\mathcal{V}}} ||_{\mathcal{G}_{\mathcal{V}},2}$$

- \mathcal{G}_V is a node group.
- W_E represents the weights for edges.

(7.10)

• Combine kEV-norm and Elementary Estimator

DIFFEE-K

$$\begin{split} & \underset{\Delta}{\operatorname{argmin}} || W_E \circ \Delta_{E \setminus \mathcal{G}_V} ||_1 + \epsilon || \Delta_{\mathcal{G}_V} ||_{\mathcal{G}_{V,2}} \\ & \text{Subject to: } || W_E \circ \left(\Delta - \left([\mathcal{T}_v(\widehat{\Sigma}_d)]^{-1} - [\mathcal{T}_v(\widehat{\Sigma}_c)]^{-1} \right) \right) ||_{\infty} \leq \lambda_n \quad (7.11) \\ & \epsilon || \Delta - \left([\mathcal{T}_v(\widehat{\Sigma}_d)]^{-1} - [\mathcal{T}_v(\widehat{\Sigma}_c)]^{-1} \right) ||_{\mathcal{G}_{V,2}}^* \leq \lambda_n \end{split}$$

Publications

FASJEM

- A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models, B Wang, J Gao, Y Qi, AISTATS 2017
- DIFFEE
 - Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure, **B Wang**, **A Sekhon**, **Y Qi**, **AISTATS 2018**

W-SIMULE

- A constrained l minimization approach for estimating multiple sparse Gaussian or nonparanormal graphical models, B Wang, R Singh, Y Qi, Machine Learning 106 (9-10), 1381-1417
- A Constrained, Weighted-L1 Minimization Approach for Joint Discovery of Heterogeneous Neural Connectivity Graphs, C Singh, B Wang, Y Qi, Advances in Modeling and Learning Interactions from Complex Data, NIPS 2017 Workshop

Publications

JEEK

• A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models, B Wang, A Sekhon, Y Qi, ICML 2018

DIFFEE-K

• A Fast and Scalable Estimator for Using Additional Knowledge in Learning Sparse Structure Change of High-Dimensional Gaussian Graphical Models, **B Wang, A Sekhon, Y Qi, submit to NIPS 2018**

R Package is Available !!!

• The project website: http://jointggm.org/

• R package "simule":

- install.packages("simule")
- demo(simule) !
- R package "fasjem":
 - install.packages("fasjem")
 - demo(fasjem) !
- R package "diffee":
 - install.packages("diffee")
 - demo(diffee) !
- R package "jeek":
 - install.packages("jeek")
 - demo(jeek) !

• A complete package "jointNet" will be ready by this summer.

- Advisor: Yanjun Qi
- Co-authors: Rita, Arshdeep, Ji, Chandan

- Lab mates: Zhaoyang, Jack, Weilin
- My Family
- Thanks!

Back-up: Difficulty in combining FASJEM and JEEK

$$\begin{aligned} \underset{\Omega_{I}^{tot},\Omega_{S}^{tot}}{\operatorname{argmin}} & ||W_{I}^{tot} \circ \Omega_{I}^{tot}||_{1} + ||W_{S}^{tot} \circ \Omega_{S}^{tot}|| + \epsilon \mathcal{R}'(\Omega^{tot}) \\ \text{Subject to: } & ||W_{I}^{tot} \circ (\Omega^{tot} - inv(\mathcal{T}_{v}(\widehat{\Sigma}^{tot})))||_{\infty} \leq \lambda_{n} \\ & ||W_{S}^{tot} \circ (\Omega^{tot} - inv(\mathcal{T}_{v}(\widehat{\Sigma}^{tot})))||_{\infty} \leq \lambda_{n} \\ & \mathcal{R}^{*'}(\Omega^{tot}) \leq \epsilon \lambda_{n} \end{aligned}$$
(7.12)

- Hard to optimize
- Lose fast and scalable property

Back-up: How to choose *v* in $T_v(\widehat{\Sigma})$

- line search
- *v* from the set $\{0.001i | i = 1, 2, ..., 1000\}$
- pick a value that makes $T_{\nu}(\widehat{\Sigma})$ and be invertible

103/108

Back-up: Connecting to Bayesian Statistics

$$- \log(\mathbb{P}(\Omega^{(i)}|X^{(i)}, \mu^{(i)}, W_{l\ j,k}^{(i)}, W_{Sj,k})) \propto - \log(det(\Omega^{(i)-1})) + < \Omega^{(i)}, \widehat{\Sigma}^{(i)} > + \sum_{j,k} (W_{l\ j,k}^{(i)}|\Omega_{l\ j,k}^{(i)}| + W_{S}|\Omega_{Sj,k}|)$$

$$(7.13)$$

Back-up: Proximal algorithm Basics

- proximity definition:
- $\operatorname{prox}_{h}(x) = \operatorname*{argmin}_{u}(h(u) + \frac{1}{2}||u x||_{2}^{2})$
- $\operatorname*{argmin}_{x} f(x) = g(x) + h(x)$
- proximal gradient descent:

•
$$x^{(k)} = \operatorname{prox}_{t_k h}(x^{(k-1)} - t_k \bigtriangledown g(x^{(k-1)}))$$

