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Background: Entity Graph

Many applications need to know
interactions among entities:

Gene Interactions
Brain connectivity

Why to study the entity graph
Understanding
Diagnosis, e.g., marker
Treatment, e.g., drug development.
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Background: What Type of Edges? Correlation to
Conditional dependency
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Background: How to Infer Entity Graph?

To measure conditional dependency
interactions physically.
Largely unknown and hard to
measure physically.

#Physical check for all possible
conditional dependency edges = 2p

(binary experiments)
For example, p = 160 important
regions in human brain
For example, p = 30000 genes in
human cell

Much more than Trillions (240) of
biological experiments
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Background: Entity graphs from Observed Samples
(Entity as Feature)

Trillions of biological experiments =⇒
Data-driven approach
Experiments (not physically check)
=⇒ Data =⇒ Entity Graph

n experiments→ n data samples
Each sample is a snapshot of all the
entities.
Each sample has measurements of
p features/entities.

n data samples is enough→ a well
estimated entity graph of p when
n >> p (low-dimensional).
p > n (high-dimensional) needs novel
approaches
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Background: Entity graphs from Heterogeneous Data
(Entity as Feature)

Most applications have heterogeneous samples.
For example:

Totally ntot data samples
From K different but related contexts, each has ni data samples
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Background: Entity graphs from Heterogeneous Data
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Task I: Learning multiple related graphs

Learning multiple related graphs
E.g., TF-TF interactions

Three graphs are similar
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Task II: Integrating additional knowledge

Integrating known knowledge in Learning multiple related graphs
E.g., known knowledge in Brain Connection
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Task III: Learning sparse changes between two graphs

A very interesting task:
Find differences in the brains of people with diseases, e.g. Autism,
Alzheimer’s
Use for understanding
Use for diagnosis
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Notations

X (i) i-th Data matrix.
Σ(i) i-th Covariance matrix.
Ω(i) i-th Inverse of covariance matrix (precision matrix).

p The total number of feature variables.
ntot The total number of samples.
X tot the concatenation of all Data matrices.
Σtot the concatenation of all Covariance matrices.
Ωtot the concatenation of all Inverse of covariance matrices

(precision matrices).

W tot
I (W (1)

I ,W (2)
I , . . . ,W (K )

I )

W tot
S (WS,WS, . . . ,WS)
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Motivation
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Motivation: More Num of features (p) to consider

Yeast gene: 6K
↓

Human gene: 30K

Words interaction, millions of
words (p > 1,000,000)
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Motivation: More num of tasks (K ) to consider
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Motivation: Limitation I – Slow Computation

The best
baseline of

Task I Task II Task III

Computational
complexity

O(Kp3) / iter O(K 4p5) O(p3) / iter

Bottle neck SVD
Linear
program-
ming

SVD

If K = 91 and p = 30K ⇓

The best
baseline of

Task I Task II Task III

Time 3.5 days / iter 6 trillion years 1 hour/ iter

Can we have a O(p2) method?
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Motivation: Limitation II – No consideration of
parallelization

Reduce O(p2) to O(1).
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Motivation: Limitation III: Lack of error bound analysis

||θ̂ − θ∗||

Missing analysis under a
high-dimensional setting
(p ≥ n)

No sacrifices of the accuracy
from speeding-up and
scaling-up the algorithm
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Our Aim: Fast and Scalable estimators for three types
of joint graphs estimation

Fast and scalable estimators for the three tasks

Parallelizable algorithms

Integrating additional knowledge

Sharp convergence rate
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Solution for Limitations - Elementary Estimator
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Background: summary of the previous optimization
strategy

e.g., ADMM algorithm
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Elementary Estimator (EE) for joint sGGMs tasks

Previous studies:

Elementary Estimator:
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Elementary Estimator (EE): Step I – Backward
mapping

Backward mapping B∗(φ̂) of the parameter (Solution of Vanilla
Maximum Likelihood Estimator (MLE))
Vanilla MLE: argmax

θ
L(θ)

Already close to true parameter
But without assumptions e.g., sparse
For instance, linear regression solution (X T X )−1X T Y
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Elementary Estimator: Step II – Optimization
formulation

Elementary Estimator (EE)

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn

(3.1)

Let R(·) =‖ · ‖1 ⇓

argmin
θ
||θ||1

Subject to: ||θ − B∗(φ̂)||∞ ≤ λn

(3.2)

Easy to prove the sharp convergence rate when R and B∗ satisfy
certain conditions.
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EE-Benefit: Fast and scalable solution

A soft-thresholding operator (closed form)
Closed form & O(p2)

Easy to parallelize in GPU

θ̂ = Sλn (B∗(φ̂))

[Sλ(A)]ij = sign(Aij) max(|Aij | − λ,0) (3.3)

Element-wise
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Background: sparse Gaussian Graphical Model
(sGGM) to derive Conditional Independence Graph
from data
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EE-GM: Elementary Estimator for sGGM

Vanilla MLE: argmin
Ω
− log(det(Ω))+ < Ω,Σ >

Backward mapping of Ω is Σ−1

Not invertible when p ≥ n

Need apporximated backward mapping

proxy backward mapping θ̂n ≈ B∗(φ̂)

In sGGM, θ̂n = [Tv (Σ̂)]−1
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EE-GM: Elementary Estimator for sGGM

argmin
θ
||θ||1

Subject to: ||θ − B∗(φ̂)||∞ ≤ λn

(3.4)

θ̂n = [Tv (Σ̂)]−1 ⇓
EE-sGGM

argmin
Ω
||Ω||1,,off

subject to:||Ω− [Tv (Σ̂)]−1||∞,off ≤ λn

(3.5)

EE R(·) θ θ̂n R∗

EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞
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EE-Benefit: Easy to prove error bound

Error bound:

||θ̂ − θ∗||∞ ≤ 2λn

||θ̂ − θ∗||F ≤ 4
√

sλn

||θ̂ − θ∗||1 ≤ 8sλn

(3.6)

Condition:

λn ≥ ||θ̂n − θ∗||∞ (3.7)

Constant: s is the num of non-zero
entries.
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Method I: FASJEM
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Outline
1 Background
2 Motivation
3 Solution for Limitations - Elementary Estimator
4 Method I: FASJEM

Background
Method
Results

5 Method II: JEEK
Background
Method
Results

6 Method III: DIFFEE
Method
Results

7 Discussion
Questions from Proposal
Future works
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Task I: Learning multiple related graphs

Learning multiple related graphs
E.g., TF-TF interactions

Three graphs are similar
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Background: Multi-task sGGMs

A pipeline to infer Multiple Related Graphs from heterogeneous
datasets X(1),. . . X(K )1.

1X tot : the concatenation of (X (1),X (2), . . . ,X (K )).
Σtot : the concatenation of (Σ(1),Σ(2), . . . ,Σ(K )).
Ωtot : the concatenation of (Ω(1),Ω(2), . . . ,Ω(K )).
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Background: Joint Graphical Lasso

Graphical Lasso

argmin
Ω
− log det(Ω)+ < Ω,Σ > +λn||Ω||1 (4.1)

Add R′(·) ⇓
Joint Graphical Lasso

argmin
Ω(i)>0

∑
i

(−L(Ω(i)) + λ1
∑

i

||Ω(i)||1

+ λ2R′(Ω(1),Ω(2), . . . ,Ω(K ))

(4.2)

Ωtot = (Ω(1),Ω(2), . . . ,Ω(K )).
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Enforcing relatedness of multiple graphs through
Regularization: FASJEM-norm

EE-sGGM

argmin
Ω
||Ω||1,,off

subject to:||Ω− [Tv (Σ̂)]−1||∞,off ≤ λn

(4.3)

Add R′(·) ⇓
FASJEM-norm

R(Ωtot ) = ||Ωtot ||1 +R′(Ωtot ) (4.4)
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Elementary Estimator (EE)

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn

(4.5)

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞
FASJEM || · ||1 +R′ Ωtot inv [Tv (Σ̂tot )] max(|| · ||∞,R′∗)

FASJEM

argmin
Ωtot

||Ωtot ||1 +R′(Ωtot )

s.t .||Ωtot − inv(Tv (Σ̂tot ))||∞ ≤ λn

R′∗(Ωtot − inv(Tv (Σ̂tot ))) ≤ λn

(4.6)
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FASJEM: Variations

FASJEM-G:

R′(·) = || · ||G,2

||Ωtot ||G,2 =

p∑
j=1

p∑
k=1

||(Ω
(1)
j,k ,Ω

(2)
j,k , . . . ,Ω

(i)
j,k , . . . ,Ω

(K )
j,k )||2

(4.7)

FASJEM-I:

R′(·) = || · ||G,∞

||Ωtot ||G,∞ =

p∑
j=1

p∑
k=1

||(Ω
(1)
j,k ,Ω

(2)
j,k , . . . ,Ω

(i)
j,k , . . . ,Ω

(K )
j,k )||∞

(4.8)
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FASJEM: Optimization Solution

JGL solution:

FASJEM solution:
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FASJEM: Optimization Solution – Proximal algorithm

FASJEM solution:

In each iteration, a proximal operator
Element-wise operator, O(p2)

GPU-parallelizable O(1)
e.g., proximity of `1

proxγ||·||1(x)

=


x (i)

j,k − γ, x (i)
j,k > γ

0, |x (i)
j,k | ≤ γ

x (i)
j,k + γ, x (i)

j,k < −γ
(4.9)

=⇒
proxγ||·||1(x)

= max((x (i)
j,k − γ),0)

+ min(0, (x (i)
j,k + γ))

(4.10)
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FASJEM: Computational Complexity

The best
baseline of

Task I Task II Task III

Computational
complexity

O(Kp3) / iter O(K 4p5) O(p3) / iter

Bottle neck SVD
Linear
program-
ming

SVD

Our ap-
proach

FASJEM

Computational
complexity

O(Kp2) / iter

Parallelization O(K ) / iter
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Summary

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

Task I FASJEM || · ||1 +R′ Ωtot inv [Tv (Σ̂tot )] max(|| · ||∞,R′∗)
Task II
Task III
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Results: Theoretical Analysis

p′ = max(Kp,ntot )

Error Bound: ||Ω̂tot − Ω∗tot ||F ≤ 324κ1a
κ2

√
s log p′

ntot

Multi-task: K Single-task:
O( log(Kp)

ntot
) O( log p

ni
))

By assuming ni = ntot
K :

We can conclude that log(Kp)
ntot

< K log p
ntot

This indicates that the multi-task estimator is better!!!

46 / 108



Results: Theoretical Analysis

p′ = max(Kp,ntot )

Error Bound: ||Ω̂tot − Ω∗tot ||F ≤ 324κ1a
κ2

√
s log p′

ntot

Multi-task: K Single-task:
O( log(Kp)

ntot
) O( log p

ni
))

By assuming ni = ntot
K :

We can conclude that log(Kp)
ntot

< K log p
ntot

This indicates that the multi-task estimator is better!!!

46 / 108



Results: Theoretical Analysis

p′ = max(Kp,ntot )

Error Bound: ||Ω̂tot − Ω∗tot ||F ≤ 324κ1a
κ2

√
s log p′

ntot

Multi-task: K Single-task:
O( log(Kp)

ntot
) O( log p

ni
))

By assuming ni = ntot
K :

We can conclude that log(Kp)
ntot

< K log p
ntot

This indicates that the multi-task estimator is better!!!

46 / 108



Results: Synthetic Data generation process
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Results: Synthetic Data Results
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Results: Real-world Data Results – Number of
Matched Edges versus the Existing Domain
Databases

Validation by counting the overlapped interactions according to the
existing bio-databases (MInact)
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Method II: JEEK
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Task II: Integrating additional knowledge

Integrating known knowledge in Learning multiple related graphs
E.g., known knowledge in Brain Connection
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

Integrating additional knowledge through a novel regularization
function R(·)

KW-norm

R({Ω(i)}) =
K∑

i=1

||W (i)
I ◦ Ω

(i)
I ||1 +

K∑
i=1

||WS ◦ ΩS||1 (5.1)

Ω(i) = Ω
(i)
I + ΩS

{W (i)
I }: weights describing knowledge of each individual graph.

WS: weights describing knowledge of the shared graph.
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Background: Shared and Task-Specific Subgraph
Representation

Know both
House keeping
interactions
Context-specific
networks
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

Use tot notation

KW-norm

R(Ωtot ) = ||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||1 (5.2)

W tot
I : weights describing knowledge of each individual graph.

W tot
S : weights describing knowledge of the shared graph.

No need to design knowledge-specific optimization
KW-norm is flexible.
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Example I: KW-norm representing the edge-level
knowledge

e.g., Spatial distance among brain regions;
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Example II: KW-norm describing the node-level
knowledge

e.g., X2 is a known hub node;
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Background: SIMULE

Decompose Ω(i) = Ω
(i)
I + ΩS

An `1 minimization approach

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K )
I , Ω̂S =

argmin
Ω

(i)
I ,ΩS

∑
i

||Ω(i)
I ||1 + εK ||ΩS||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I||∞ ≤ λn, i = 1, . . . ,K
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Background: WSIMULE: A weighted SIMULE
estimator

SIMULE

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K )
I , Ω̂S = argmin

Ω
(i)
I ,ΩS

∑
i

||Ω(i)
I ||1 + εK ||ΩS||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I||∞ ≤ λn, i = 1, . . . ,K

ADD W (i)
I ,WS ⇓

W-SIMULE

Ω̂
(1)
I , ..., Ω̂

(K )
I , Ω̂S =

∑
i

argmin
Ω

(i)
I ,ΩS

||W (i)
I ◦ Ω

(i)
I ||1 + K ||WS ◦ ΩS||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I||∞ ≤ λ, i = 1, ...,K .

(5.3)
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Proposed Method: Combine EE and KW-norm

Elementary Estimator

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn

(5.4)

+

KW-norm

R(Ωtot ) = ||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||1 (5.5)
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Proposed Method: Joint Elementary Estimator
incorporating additional Knowledge (JEEK)

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

JEEK kw-norm Ωtot inv [Tv (Σ̂tot )] kw-dual

JEEK

argmin
Ωtot

I ,Ωtot
S

||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||

Subject to: ||W tot
I ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

||W tot
S ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

Ωtot = Ωtot
S + Ωtot

I

(5.6)
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Proposed method: JEEK – Solution

Fast and Scalable solution2 – p2 small linear programming
subproblems with only K + 1 variables:

argmin
ai ,b

∑
i

|wiai |+ K |wsb|

Subject to: |ai + b − ci | ≤
λn

min(wi ,ws)
,

i = 1, . . . ,K

(5.7)

2ai := Ω
(i)
I j,k (the {j , k}-th entry of Ω(i))

b := ΩSj,k

ci = [Tv (Σ̂(i))]−1
j,k .

W (i)
j,k = wi and W S

j,k = ws.
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Why JEEK is better

Rich and flexible for integrating additional knowledge
e.g., spatial, anatomy, hub, pathway, location, known edges;

Parallelizable optimization with small sub-problems.
Theoretical guaranteed
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JEEK: Computational Complexity

The best
baseline of

Task I Task II Task III

Computational
complexity

O(Kp3) / iter O(K 4p5) O(p3) / iter

Bottle neck SVD
Linear
program-
ming

SVD

Our ap-
proach

FASJEM JEEK

Computational
complexity

O(Kp2) / iter O(K 4p2)

Parallelization O(K ) / iter O(K 4)
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Summary

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

Task I FASJEM || · ||1 +R′ Ωtot inv [Tv (Σ̂tot )] max(|| · ||∞,R′∗)
Task II JEEK kw-norm Ωtot inv [Tv (Σ̂tot )] kw-dual
Task III
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Theoretical Results

Sharp convergence rate as the state-of-art

||Ω̂tot − Ωtot∗||F ≤ 4
√

ki + ksλn

max(||W tot
I ◦ (Ω̂tot − Ωtot∗)||∞, ||W tot

S ◦ (Ω̂tot − Ωtot∗||∞) ≤ 2λn

||W tot
I ◦ (Ω̂tot

I − Ωtot
I
∗
)||1 + ||W tot

S ◦ (Ω̂tot
S − Ωtot

S
∗
)||1 ≤ 8(ki + ks)λn

(5.8)

Where a, c, κ1 and κ2 are constants

||Ω̂tot−Ωtot∗||F

≤
16κ1a max

j,k
(W tot

I j,k ,W
tot
S j,k )

κ2

√
(ki + ks) log(Kp)

ntot

(5.9)
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Empirical Results on Multiple Synthetic Datasets
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(c)Time vs. p-[perturb,K=2,n=p/2]

JEEK
W-SIMULE
JGL-perturb

JEEK outperforms the speed of the state-of arts significantly
faster (∼ 5000× improvement);
JEEK obtains better AUC as the state-of-the-art;
JEEK obtains better AUC than JEEK-NK (no additional
knowledge).
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Empirical Results on Two Real-world Datasets
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(a). On real-world gene expression data about leukemia cells vs.
normal blood cells. Used multiple types of additional knowledge;
(b). On real-world Brain fMRI dataset: ABIDE. Using LDA as a
downstream classification for evaluating JEEK vs. baselines.
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Method III: DIFFEE
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Takes III: Learning sparse changes between two
graphs

Each graph may be dense or sparse, differential net is sparse
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Proposed Method III: DIFFEE

Two cases : d (disease) & c (control)

argmin
θ
||θ||1

Subject to:

||θ − B∗(φ̂)||∞ ≤ λn

(6.1) ∆ = Ωd − Ωc
=⇒

argmin
∆
||∆||1

Subject to:

||∆− B∗(Σ̂d , Σ̂c)||∞ ≤ λn

(6.2)
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Proposed Method III: DIFFEE

Elementary Estimator (EE)

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn

(6.3)

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞
DIFFEE || · ||1 ∆

(
[Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1

)
|| · ||∞

DIFFEE

argmin
∆
||∆||1

Subject to: ||∆−
(

[Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1
)
||∞ ≤ λn

(6.4)
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DIFFEE: Optimization Solution

Close form
∆̂ = Sλn ([Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1) (6.5)

[Sλ(A)]ij = sign(Aij) max(|Aij | − λ,0) (6.6)

GPU-parallelizable

76 / 108



DIFFEE: Computational Complexity

The best
baseline of

Task I Task II Task III

Computational
complexity

O(Kp3) / iter O(K 4p5) O(p3) / iter

Bottle neck SVD
Linear
program-
ming

SVD

Our ap-
proach

FASJEM JEEK DIFFEE

Computational
complexity

O(Kp2) / iter O(K 4p2) O(p3)

Parallelization O(K ) / iter O(K 4) O(p3)
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Summary

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

Task I FASJEM || · ||1 +R′ Ωtot inv [Tv (Σ̂tot )] max(|| · ||∞,R′∗)
Task II JEEK kw-norm Ωtot inv [Tv (Σ̂tot )] kw-dual

Task III DIFFEE || · ||1 ∆
[Tv (Σ̂d )]−1

−[Tv (Σ̂c)]−1 || · ||∞
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Results: Theoretical Analysis

Sharp convergence rate as the state-of-art

||∆̂−∆∗||∞ ≤
16κ1a
κ2

√
log p

min(nc ,nd )

||∆̂−∆∗||F ≤
32κ1a
κ2

√
k log p

min(nc ,nd )

||∆̂−∆∗||1 ≤
64κ1a
κ2

k

√
log p

min(nc ,nd )

(6.7)
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Results: Synthetic Data Results
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Results: Synthetic Data Results
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Results: Real-world Data Results

Apply to Brain image data (fMRI)
Use the estimated different network in LDA
Compare the accuracy with the state-of-art methods

Method DIFFEE FusedGLasso Diff-CLIME
Accuracy (%) 57.58% 56.90% 53.79%
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Discussion
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Support Analysis Results

DIFFEE as an example

Lemma

||∆∗ − B∗(Σ̂d , Σ̂c)||∞ ≤ λn (7.1)

⇓
Corollary

∆∗i,j = 0 =⇒ |B∗(Σ̂d , Σ̂c)i,j | ≤ λn (7.2)

∆̂ = Sλn (B∗(Σ̂d , Σ̂c)) (7.3)

Result

∆∗i,j = 0 =⇒ ∆̂i,j = 0 (7.4)

supp(∆̂) ⊆ supp(∆∗)
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Support Analysis Result

Additional Assumption:

Assumption

min
s∈supp(∆∗)

|∆∗s| ≥ 3||∆∗ − B∗(Σ̂d , Σ̂c)||∞ (7.5)

supp(∆∗) ⊆ supp(∆̂) (7.6)

Combine the above results

supp(∆∗) = supp(∆̂) (7.7)
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Standardized Covariance Matrices

Real world: Different tasks→ different value scale
e.g., fMRI vs RNA squencing

Problem: hard to choose λn in different scales

Solution: Covariance matrices =⇒ Correlation matrices

Theorem
The inverse of Correlation matrices have the same support set as the
inverse of covariance matrices

Nonparanormal extensions – Relax the Gaussian Assumption
Added in all the packages
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Iteration number T

linearly converge method: T = O(n log( 1
TOL))

TOL is the error bound

FASJEM error bound: O( log(Kp)
ntot

)

T = O( ntot log(ntot )
log(log(Kp)) )
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Trade-off

proxy backward mapping still O(p3)

In practice, fast in our three tasks
Thanks to excellent low-level implementation

Not well performed in low-dimensional case
p′ = max(n,p)
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Trade-off
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KW-norm for FASJEM

Revise the `1 norm in FASJEM to a KW-norm

KW-norm for FASJEM

R({Ω(i)}) =
K∑

i=1

||W (i) ◦ Ω(i)||1

= ||W tot ◦ Ωtot ||1

(7.8)

{W (i)}: weights describing knowledge of each graph.
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Future work: FASJEM with additional knowledge –
FASJEM-K

FASJEM-K

argmin
Ωtot

||Wtot ◦ Ωtot ||1 + εR′(Ωtot )

s.t .||Wtot ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

R′∗(Ωtot − inv(Tv (Σ̂tot ))) ≤ ελn

(7.9)
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KW-norm for Differential Network: kEV-norm

Integrating both edge-level and node-level additional knowledge
through a novel regularization function R(·)

kEV-norm

R(∆) = ||WE ◦∆E\GV
||1 + ε||∆GV ||GV ,2 (7.10)

GV is a node group.
WE represents the weights for edges.
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Future work: DIFFEE-K

Combine kEV-norm and Elementary Estimator

DIFFEE-K

argmin
∆
||WE ◦∆E\GV

||1 + ε||∆GV ||GV ,2

Subject to: ||WE ◦
(

∆−
(

[Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1
))
||∞ ≤ λn

ε||∆−
(

[Tv (Σ̂d )]−1 − [Tv (Σ̂c)]−1
)
||∗GV ,2 ≤ λn

(7.11)
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Publications

FASJEM
A Fast and Scalable Joint Estimator for Learning
Multiple Related Sparse Gaussian Graphical Models,
B Wang, J Gao, Y Qi, AISTATS 2017

DIFFEE
Fast and Scalable Learning of Sparse Changes in
High-Dimensional Gaussian Graphical Model
Structure, B Wang, A Sekhon, Y Qi, AISTATS 2018

W-SIMULE
A constrained` 1 minimization approach for
estimating multiple sparse Gaussian or
nonparanormal graphical models, B Wang, R Singh, Y Qi,
Machine Learning 106 (9-10), 1381-1417
A Constrained, Weighted-L1 Minimization Approach
for Joint Discovery of Heterogeneous Neural
Connectivity Graphs, C Singh, B Wang, Y Qi, Advances in
Modeling and Learning Interactions from Complex Data, NIPS 2017
Workshop
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Publications

JEEK
A Fast and Scalable Joint Estimator for
Integrating Additional Knowledge in Learning
Multiple Related Sparse Gaussian Graphical Models,
B Wang, A Sekhon, Y Qi, ICML 2018

DIFFEE-K
A Fast and Scalable Estimator for Using
Additional Knowledge in Learning Sparse Structure
Change of High-Dimensional Gaussian Graphical
Models, B Wang, A Sekhon, Y Qi, submit to NIPS 2018
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R Package is Available !!!

The project website: http://jointggm.org/

R package ”simule”:
install.packages("simule")
demo(simule) !

R package ”fasjem”:
install.packages("fasjem")
demo(fasjem) !

R package ”diffee”:
install.packages("diffee")
demo(diffee) !

R package ”jeek”:
install.packages("jeek")
demo(jeek) !

A complete package ”jointNet” will be ready by this summer.
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Back-up: Difficulty in combining FASJEM and JEEK

argmin
Ωtot

I ,Ωtot
S

||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||+ εR′(Ωtot )

Subject to: ||W tot
I ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

||W tot
S ◦ (Ωtot − inv(Tv (Σ̂tot )))||∞ ≤ λn

R∗′(Ωtot ) ≤ ελn

(7.12)

Hard to optimize
Lose fast and scalable property
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Back-up: How to choose v in Tv (Σ̂)

line search
v from the set {0.001i |i = 1,2, . . . ,1000}
pick a value that makes Tv (Σ̂) and be invertible
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Back-up: Connecting to Bayesian Statistics

− log(P(Ω(i)|X (i), µ(i),W (i)
I j,k ,WSj,k ))

∝ − log(det(Ω(i)−1
))+ < Ω(i), Σ̂(i) >

+
∑
j,k

(W (i)
I j,k |Ω

(i)
I j,k |+ WS|ΩSj,k |)

(7.13)
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Back-up: Proximal algorithm Basics

proximity definition:
proxh(x) = argmin

u
(h(u) + 1

2 ||u − x ||22)

argmin
x

f (x) = g(x) + h(x)

proximal gradient descent:
x (k) = proxtk h(x (k−1) − tk 5 g(x (k−1)))
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Back-up: Proximal algorithm for FASJEM
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