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Background: Entity Graph

@ Many applications need to know
interactions among entities:
o Gene Interactions
e Brain connectivity
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Background: Entity Graph

@ Many applications need to know
interactions among entities:
o Gene Interactions
e Brain connectivity

@ Why to study the entity graph

e Understanding
e Diagnosis, e.g., marker
e Treatment, e.g., drug development.
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Background: What Type of Edges? Correlation to
Conditional dependency

A1: Children swim Al
A2: Weather is hot A2
A3: High sale of ice cream

A4: Wear less amount of clothes
A5: High Electricity A4
Consumption
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Background: What Type of Edges? Correlation to
Conditional dependency

A1 A2 A3 A4 A5

A3 — A1l
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Background: How to Infer Entity Graph?

@ To measure conditional dependency
interactions physically.

@ Largely unknown and hard to
measure physically.
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Background: How to Infer Entity Graph?

@ To measure conditional dependency
interactions physically.

@ Largely unknown and hard to
measure physically.

e #Physical check for all possible
conditional dependency edges = 2P
(binary experiments)

e For example, p = 160 important
regions in human brain

e For example, p = 30000 genes in
human cell

e Much more than Trillions (24°) of
biological experiments

7/108



Background: Entity graphs from Observed Samples
(Entity as Feature)

o Trillions-ofbiological-experiments —
Data-driven approach

@ Experiments (not physically check)
— Data = Entity Graph

Context/Task(1)

- g Infer |[®-®
= RISE
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Background: Entity graphs from Observed Samples
(Entity as Feature)

o Trillions-ofbiological-experiments —
Data-driven approach

@ Experiments (not physically check)
— Data = Entity Graph

@ nexperiments — n data samples N
i k(1
e Each sample is a snapshot of all the ontext/Task(1)

" - Infer |®-®
entities. '@
e Each sample has measurements of ™ O
p features/entities.
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Background: Entity graphs from Observed Samples
(Entity as Feature)

o Trillions-ofbiological-experiments —

Data-driven approach

@ Experiments (not physically check)
— Data = Entity Graph
@ nexperiments — n data samples

e Each sample is a snapshot of all the et

" - Infer |®-®
entities. '@
e Each sample has measurements of ™ O

p features/entities.

@ ndata samples is enough — a well
estimated entity graph of p when
n >> p (low-dimensional).

@ p > n (high-dimensional) needs novel
approaches
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Background: Entity graphs from Heterogeneous Data

(Entity as Feature)

@ Most applications have heterogeneous samples.

@ For example:

o Totally ny; data samples
e From K different but related contexts, each has n; data samples

Context/Task(1)

Context/Task(2)

Machine learning
approach
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Background: Entity graphs from Heterogeneous Data

Context/Task(1) Context/Task(2)

Leukemia Commonalit Breast Cancer
Dataset ¥ Dataset

Case I:

Case ll:

Normal Cell Differences Cancer Cell
Dataset Dataset
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Task |: Learning multiple related graphs

@ Learning multiple related graphs
@ E.g., TF-TF interactions
e Three graphs are similar

Normal

Leukemia

)7
)
()
N

Stem

g
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Task Il: Integrating additional knowledge

@ Integrating known knowledge in Learning multiple related graphs
e E.g., known knowledge in Brain Connection

Context/Task(1)
Joint infer
Graph 1
x@ ¢
Context/Task (K)
Graph K
GE)
XK
Data Additional Knowledge Graphs
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Task Ill: Learning sparse changes between two graphs

@ A very interesting task:
e Find differences in the brains of people with diseases, e.g. Autism,
Alzheimer’s
e Use for understanding
o Use for diagnosis
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Notations

X() j-th Data matrix.

¥ () j-th Covariance matrix.

Q) j-th Inverse of covariance matrix (precision matrix).
p The total number of feature variables.

Nt The total number of samples.

X! the concatenation of all Data matrices.

¥ 't the concatenation of all Covariance matrices.

Q! the concatenation of all Inverse of covariance matrices
(precision matrices).

Wltot (WI(1)’ Wl(2)7 L WI(K))
Wg)t (Ws, Ws, ..., Ws)
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Motivation: More Num of features (p) to consider

@ Yeast gene: 6K

{

Human gene: 30K

@ Words interaction, millions of
words (p > 1,000, 000)
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Motivation: More num of tasks (K) to consider

© .
Patient 1 Tissue 1
| 0

Normal vs Cancer .
Tissue 2

\ Patient2 — a

ln Patient 3 Tissue3
K=2 K =91

ENCODE Project Consortium et al. An integrated encyclopedia of dna elementsin the human genome. Nature,
489(7414):57-74, 2012.
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Motivation: Limitation | — Slow Computation

The = best moei | Taskli Task II
baseline of
Computational 3y 4.5 3y
complexity O(Kp?) /iter | O(K*p>) | O(p°)/ iter
Linear
Bottle neck SVD program- SVD
ming
@ IfK=91and p=30K [}
The = best| ik Task I Task II
baseline of
Time 3.5 days / iter | 6 trillion years | 1 hour/ iter

@ Can we have a O(p?) method?
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Motivation: Limitation Il — No consideration of
parallelization

Computer Clusters GPU

@ Reduce O(p?) to O(1).
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Motivation: Limitation Ill: Lack of error bound analysis

° |6 — 67|

@ Missing analysis under a
high-dimensional setting

(p>n)

. plimal Error
@ No sacrifices of the accuracy Qptimal Error bound

from speeding-up and

scaling-up the algorithm Estimated parameter
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Our Aim: Fast and Scalable estimators for three types
of joint graphs estimation

@ Fast and scalable estimators for the three tasks
@ Parallelizable algorithms
@ Integrating additional knowledge

@ Sharp convergence rate
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Solution for Limitations - Elementary Estimator J
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Background: summary of the previous optimization
strategy

@ e.g., ADMM algorithm

° &

ﬂ Gradient updates O(p3
Starting point

Estimated parameter
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Elementary Estimator (EE) for joint sGGMs tasks

@ Previous studies:

@ v.~.'
ﬂ Gradient updates 0(p3
Starting point

@ Elementary Estimator:

. D

ﬂ 14
Pre-compute 0(p3)

Starting point Compute once

lepaént-wise operator

(p*))
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Elementary Estimator (EE): Step | — Backward
mapping

-~

@ Backward mapping 5*(¢) of the parameter (Solution of Vanilla
Maximum Likelihood Estimator (MLE))

@ Vanilla MLE: argmax £(#)
0

o Already close to true parameter
o But without assumptions e.g., sparse
e For instance, linear regression solution (X7 X)~'XTY

Backward mapp+t

N

. r

L4
j : Pre-compute 0(p?)

Starting point Compute once

leprént-wise operator

o(p*))
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Elementary Estimator: Step || — Optimization
formulation

Elementary Estimator (EE)

argminR(6)
0

-~

Subject to: R*(0 — B*(¢)) < An

o LetR(:) = - |1 Y

argmin/ 6]
0 (3.2)

-~

Subject to: ||6 — B*(¢)]|oo < An

@ Easy to prove the sharp convergence rate when R and B* satisfy
certain conditions.
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EE-Benefit: Fast and scalable solution

@ A soft-thresholding operator (closed form)
@ Closed form & O(p?)
@ Easy to parallelize in GPU

0= 8),(5(9))
[S\(A)]j = sign(Ay) max(|4;] — 2,0) (3.3)

@ Element-wise

O, Oy G v Oy On O O
0y . - O On O3 _rove | O %2 T

| z=Cov(X)= z 7| T=Cov(X)= a
" Om On G2 " Op Ca w7

Apply same operator
Independent calculation

27/108



Background: sparse Gaussian Graphical Model
(sGGM) to derive Conditional Independence Graph

Il
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EE-GM: Elementary Estimator for sGGM

@ Vanilla MLE: argmin — log(det(Q2))+ < Q, % >
Q

@ Backward mapping of Q is ¥~
@ Not invertible when p > n
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EE-GM: Elementary Estimator for sGGM

@ Vanilla MLE: argmin — log(det(Q2))+ < Q, % >
Q

@ Backward mapping of Q is ¥~

@ Not invertible when p > n

@ Need apporximated backward mapping
e proxy backward mapping On ~ B*(q@)
e InsGGM, 6, = [T,(X)]"

Solution of High-
Vanilla MLE (no L1
regularization):
backward mapping

Proxy L1
backward
7| mapping

Elementary
— Estimators
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EE-GM: Elementary Estimator for sGGM

argmin| ||+
0

~.

Subject to: ||0 — B*(#)||oc < An

On = [TW(Z)] U

argmin||Q|[1 off
Q

subject t0:[|Q2 — [Ty(Z)] ™" ||ac.oft < An

EE R() | 6 On R*
EE-sGGM | |||l | Q [ [TWE]" |1l [l
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EE-Benefit: Easy to prove error bound

@ Error bound:

Proxy
116 = 6%||oo < 2An Backward
10— 0"l <4Vsh,  (3.6) Mapping
110 — 6%||1 < 8sAn
@ Condition:
An > |00 = 0%]]o (3.7)

@ Constant: s is the num of non-zero
entries.
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Outline

© Method I: FASJEM
@ Background
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Task |: Learning multiple related graphs

@ Learning multiple related graphs
@ E.g., TF-TF interactions
e Three graphs are similar

Normal

Leukemia

)7
)
()
N

Stem

g
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Background: Multi-task sGGMs

@ A pipeline to infer Multiple Related Graphs from heterogeneous

datasets X(1),.. . X(K)1,

El
= 0.23 | 0.05 |-0.02 | 0.05
T 10
s
g s
3 023 0.25 | 010 |-025
o of
=]
g 0.05 |-025 | 1.10 | -0.24| 0.10
< -10
z
£-15 -0.02|0.10 |-0.24 02
5 -20
< 20 40 60 80 100

Time (s) 0.05 |-0.25 [ 0.10 |-0.24

hﬂulthtask

el GGM
5 0.23 | 005 |-0.02| 005
s
<1
@ -0.23 0.25 | 010 |-0.10
aQ
=]
e 0.05 [-0.25 | 1.10 | -0.24| 0.10
E -0.02 | 0.10 |-0.24 024
< 20 40 60 80 100

Time (s) 0.05 |-0.10 | 0.10 |-0.24

1X®!: the concatenation of (X(V, X® . X))
¥ (),

)
Q).

Y': the concatenation of (X
Q™": the concatenation of (Q

(), 5
M o

)
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)7.--,
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Decode
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0 0.2 1 0.2 o i
Sparsity
0 0 0.2 0.2 pattern
) 0.2 [ 0.2
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Decode
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Background: Joint Graphical Lasso

Graphical Lasso

argmin — log det(Q)+ < Q, X > +An||Q|1 (4.1)
Q

e Add R/(\) ()

Joint Graphical Lasso

argmin Y _(—L(Q7) + )y Z 192014
Q>0 5 (4.2)

+XR(QM, QR ),...,Q(K))

° Q= (21, Q@) ... Q)
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Outline

© Method I: FASJEM

@ Method
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Enforcing relatedness of multiple graphs through
Regularization: FASJEM-norm

argmin||Q|[1 off
Q

N (4.3)
subject to:(|Q — [Tv(X)] " [|oo ot < An

e Add R'(") (X

R(Qot) = ||Qot] |1 + R’ (Qor)
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Elementary Estimator (EE)

argminR(0)
0 R (4.5)

Subject to: R*(0 — B*(¢)) < An

EE R() 0 0, R*(")
EE-sGGM IR Q | L) |- 1loo
FASJEM | |- |l + R’ | Q@ | inv[T,(ZP)] | max(]| - [Jec, R'™*)

FASJEM

argmin ||Qot||[1 + R (Qtot)

Qtot

.1 |Q0t — INV(T(Zt0))] oo < An (4.6)
R* (Qot — IV(Ty(Zt0t))) < An

v
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FASJEM: Variations

o FASJEM-G:
R()=1"1llgz2
& o) 6@ (0 (K) (4.7)
HQTOTHQ,Q = Z Z H(Qj,k s Q/vk yooe ’Qj7k’ . 7Qj,k )||2
j=1 k=1
o FASJEM-I:
R()=1"llg,
P& o) 6@ () (K) (4.8)
1190t IG.00 = ZZ 102, % Qs Qi o
j=1 k=1
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FASJEM: Optimization Solution

@ JGL solution:

' &
ﬂ ~
( T3
Gradient updates
0 (Kp®) / iter

Estimated parameter
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FASJEM: Optimization Solution

@ JGL solution:

' &
ﬂ ~
( 13
Gradient updates
0 (Kp®) / iter

Estimated parameter

@ FASJEM solution:
n
: r .

Proximal Operator
ﬂ L4 0(p?)& GPU / iter
Pre-compute O(Kp?) h(p )

Starting point Compute once
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FASJEM: Optimization Solution — Proximal algorithm

@ FASJEM solution:

|-
Q )* —>" Proximal Operator
w - Pre-cgmpute o(Kkp?) E(pz)& GPU |/ iter
Starting point Compute once
@ In each iteration, a proximal operator
@ Element-wise operator, O(p?)
prox, ., ()
XD x5 prox., ., (%)
b ), : .
= 0, \X,-(QI <7 = max((x} —).0) (4.10)
Xp 1 X <= + min(0, (x? 4 7))

(4.9)
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FASJEM: Optimization Solution — Proximal algorithm

@ FASJEM solution:

N
° )* A*I Proximal Operator
ﬁ\ T Pre-cgmpute O(Kp3) Q(P*)& GPU/iter
Starting point Compute once
@ In each iteration, a proximal operator
@ Element-wise operator, O(p?)
@ GPU-parallelizable O(1)
@ e.g., proximity of ¢4
prox, . (X)
() () prox. j, (x)
= o<y = max((x{) —7),0) (4.10)
Xk X <= + min0, (x + 7))

(4.9)
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FASJEM: Computational Complexity

The = best! ki | Taskll Task Il

baseline of

Computational 3y 4.5 3\

complexity O(Kp?) liter | O(K*p>) | O(p°)/ iter
Linear

Bottle neck SVD program- SVD
ming

Our @ | EagyEM

proach

Computgtlonal O(Kp?) / iter

complexity

Parallelization | O(K) / iter
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Summary

EE R(") 0 0, R* (")
EE-sGGM Il - 14 Q (Tv(x)] ! I - oo
Task| | FASJEM | [|- |1+ R | Q° | inv[To(Z®)] | max(|| - [|oo, R”")
Task Il
Task Il
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Outline

© Method I: FASJEM

@ Results
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Results: Theoretical Analysis

@ p' = max(Kp, Niot)
@ Error Bound: ||Qor — Qiyl|F < 324%&\/%

Multi-task: | K Single-task:
O(M) IEE)))

Niot n;

@ By assuming n; = ¢t
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@ p' = max(Kp, Niot)
@ Error Bound: ||Qor — Qiyl|F < 324%3\/%

Multi-task: | K Single-task:
O(M) IEE)))

Niot n;

@ By assuming n; = ¢t

@ We can conclude that '8  jloep
tot tot
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Results: Theoretical Analysis

@ p' = max(Kp, Niot)
@ Error Bound: ||Qor — Qiyl|F < 324%3\/%

Multi-task: | K Single-task:
O(M) IEE)))

Niot n;

@ By assuming n; = ¢t

@ We can conclude that '8  jloep
tot tot

@ This indicates that the multi-task estimator is better!!!
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Results: Synthetic Data generation process

9
Qo —

L|e2fojogo -0.23 | 0.05 |-0.02 | 0.05

02 1 10210 )02 0.2 0.25 | 010 [-0.25
»
>

0|02t o020 005 [-0.25 | 110 | -0.24| 0.10

oo o2 02 0.02| 0.10 | -0.24 0.2

o |02] 0|02 005 [-0.25 | 0.10 |-0.22

Inverse

1oz o]o|o -023 | 0.05 | -0.02 | 0.05

02| 1 |o2|o0 |0 -0.23 0.25| 0.10 |-0.10 N
>

0oz 1 foz2]|o0 0.05 |-0.25 | 1.10 | -0.24 0.10

oo o2 02 -0.02{ 010 [-0.20 0.24

oo |o oz 0.05 |-0.10 | 0.10 |-0.24

Context/Task(1)

Context/Task(2)
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Results: Synthetic Data Results

(a)ROC curve-[p=2000,K=2,n=p/2]

(c)p vs.

ime-[K=2,n,=p/2]

(e)p vs. time-[K:Z,ni=p/4]

0 2000 4000 6000 8000 10000

p (Num of nodes)
(d)K vs. time-[p=4000,ni=p/2]

2000 4000 6000 8000 10000
p (Num of nodes)

(K vs. time-[p=4000,ni=p/4]

=
043 +FASJEM-G
~-JGL-group
02 Single-task EE
R —Glasso
0 02 0.4 0.6 08
FPR
(b)K vs. time-[p=2000,ni=p/2]
4
— | FASIEM-G
S ||»-JGL-group
8 3fl-e-FA PU!
=3
k<)
=2
)
E
E1
>
°

o

6 8 10
K(Num of tasks)

T

+-FASJEM-G
~JGL-group
©-FAS-G-GPU

4 5 6 7 8
K(Num of tasks)
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Results: Real-world Data Results — Number of
Matched Edges versus the Existing Domain
Databases

@ Validation by counting the overlapped interactions according to the
existing bio-databases (MInact)

breast/colon cancer data Crohn's disease data

15 8
6

10
4

5
2 IA|_‘

0 . 0 ”

%, % 2 “%, o
% % 2, @’?9,4/ '5')
FASJEM-G JJGL-group e, KN
s,
3

s myeloma and bone lesions data myeloma and bone lesions data

6

4

2

0 Y, Ly

% “, %, %, %
2 %, 2
O‘/ Z /o Y.
,/_o \/@ / OO, C‘
%, %, %, %, &4
%, S 7
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Outline

© Method II: JEEK
@ Background
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Task Il: Integrating additional knowledge

@ Integrating known knowledge in Learning multiple related graphs
e E.g., known knowledge in Brain Connection

Context/Task(1)
Joint infer
Graph 1
x@ ¢
Context/Task (K)
Graph K
GE)
XK
Data Additional Knowledge Graphs
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

@ Integrating additional knowledge through a novel regularization
function R(+)

K K
RUQY) = ST (W 0 QP11 + S [|Ws 0 Qg (5.1)
i=1 i=1

o 00 =0l g
° {W,(’)}: weights describing knowledge of each individual graph.
@ Ws: weights describing knowledge of the shared graph.
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Background: Shared and Task-Specific Subgraph
Representation

Context/Task(1) Context/Task(2)
© ®)
® & & ® @ Know both .
@00,z ere o? @@, ... @) e R @ House keep|ng
interactions
®®@CK%>®®® o Context-specific
®-® ® ® ® ® networks

1 Q.
Ql

Individual(1) Individual(2) Shared

54/108



Solution: Using Knowledge as Weight in
Regularization (KW-norm)

@ Use tot notation

R(°) = [| W[ 0 Q81| + [ WE" 0 01 (5.2)

@ W/et: weights describing knowledge of each individual graph.
e W' weights describing knowledge of the shared graph.
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Solution: Using Knowledge as Weight in
Regularization (KW-norm)

@ Use tot notation

R(°) = [| W[ 0 Q81| + [ WE" 0 01 (5.2)

@ W/et: weights describing knowledge of each individual graph.
e W' weights describing knowledge of the shared graph.

@ No need to design knowledge-specific optimization

@ KW-norm is flexible.
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Example I: KW-norm representing the edge-level
knowledge

@ e.g., Spatial distance among brain regions;

¢
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Example II: KW-norm describing the node-level

knowledge

@ e.g., Xz is a known hub node;

1/y | 1

1/y

1/y | 1

1/y | 1
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Background: SIMULE

@ Decompose Q) = Q) + Qg

@ An /4 minimization approach

aM. Q@ . Ak g -

argmin Y |19 [|1 + eK][Qs|ls

Qg i

Subject to: |[ZD(Q) + Qg) = Il < A, i=1,...

Context/Task(1)

) ere

(@02

Context/Task(2)

®®
©-®

® ‘

®© ®
®
80

@20,z e R

[XC)
®-©®

®

® ®
efle

® ®
® ®
® @

K

) ] ¥
Individual(1) Individual(2) ~ Shared
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Background: WSIMULE: A weighted SIMULE
estimator

am a® 6k g¢— ar(g)minz 19511 + eK][Qs] 1
Qs i

Subject to: [TV + Qg) = flja < An, i=1,...,K

o ADD W) Wy [}

a9, Qs = Y argmin|| W o Q|1 + K[| Ws 0 Qs
i o as (5.3)
Subject to: [|[ED(Q) + Qg) = fl|lo < A, i=1,.... K.

59/108



Outline

© Method II: JEEK

@ Method
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Proposed Method: Combine EE and KW-norm

Elementary Estimator

argminR(6)
0

~

Subject to: R*(6 — B*(¢)) < A\n

+

R(Q1) = || W[ 0 Q|1 + || WE" 0 Q|
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Proposed Method: Joint Elementary Estimator
incorporating additional Knowledge (JEEK)

EE R() | 0 7, ()
EE-sGGM | |||l Q | [TEI | s
JEEK kw-norm | Q©t | inv[T,(X?)] | kw-dual

JEEK

argmin|| W/°" o QI°|[4 + [| W5 0 Q]|
Q;OI,tht

Subject to: || WPl o (P — inv(T,(Z°)))|s < An
|WE o (1 — inv (T (ZP)))]|0 < An

Qtot _ Qtsof + QII‘OI‘

(5.6)

v
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Proposed method: JEEK — Solution

@ Fast and Scalable solution? — p? small linear programming
subproblems with only K + 1 variables:

argmlnz |wiai| + K|wsb|
a;,b

An (5.7)

Subjectto: |ai+b—¢i| < ———,
min(w;, Ws)

i=1,... K

g = Q, 1« (the {j, k}-th entry of Q0)
b:= S/k

¢ =[T(EN)],.

W].E’;_w,and WS = ws.
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Why JEEK is better

@ Rich and flexible for integrating additional knowledge
e e.g., spatial, anatomy, hub, pathway, location, known edges;
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Why JEEK is better

@ Rich and flexible for integrating additional knowledge
e e.g., spatial, anatomy, hub, pathway, location, known edges;

@ Parallelizable optimization with small sub-problems.
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Why JEEK is better

@ Rich and flexible for integrating additional knowledge
e e.g., spatial, anatomy, hub, pathway, location, known edges;

@ Parallelizable optimization with small sub-problems.
@ Theoretical guaranteed
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JEEK: Computational Complexity

The — best| g1 | Taskll Task II

baseline of

Computational 3y g 4.5 3\

complexity O(Kp?) /iter | O(K*p>) | O(p°)/ iter
Linear

Bottle neck SVD program- SVD
ming

Our " | FASJEM | JEEK

proach

Computational oy 1 4.0

complexity O(Kp7) / iter | O(K*p<)

Parallelization | O(K)/iter | O(K*)
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Summary

EE R() 0 0 R*()
EE-sGGM Il - 14 Q (Tv(x)] ! I~ oo
Task | | FASJEM | ||| + R’ | QO | inv[T(E°)] | max(]| - |J, R'™*)
Task Il JEEK kw-norm | Q" | inv[T,(X"")] kw-dual
Task lll
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Outline

© Method II: JEEK

@ Results
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Theoretical Results

@ Sharp convergence rate as the state-of-art

||§tot 7 QIDI*”F < 4 /ki +ks)\n
maX(|| VVIIOI (ﬁtot Qtot*)”ooa H Wéol (ﬁtot _ QIO!*HOO) < 2An (58)
WP o (Q7 = QI)ls + || WE" o (QF" — Q™)+ < 8(ki + ks)An

Where g, ¢, k1 and kp are constants

R *
||Qtot_Qtot ||

tot tot
101 am Wi W5k [t + ko) ro(kp) — ©9)

K2 Niot

<
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Empirical Results on Multiple Synthetic Datasets

0.8 (a)AUC vs. p - [hub,K=2,n=p/2] 15 (b)Time vs. p-[hub,K=2,n=p/2] 1éc)Time vs. p-[perturb,K=2,n=p/2]

1 | [Fe-JEEK -5-JEEK
o | |-A-W-SIMULE -4 W-SIMULE
~0. s = Al |4-)JGL-hub = Al 4 GL-perturb)
B mmme b= 1 v el ) -
T f " %10 am %10 R
) 1 ko) o7 o P
S H = , H = 5 \
004 | o & | o ‘_’_2 |
=] 1 £ - £ L
= E=rrr £ 5‘;/5—5:——5———‘ £ 5“/5—5:—45———‘
0.2 : —+ JEEK-NK : :
| |-&-W-siMULE H H
I |4 JGL-hub | |
0 v 0 L 0 L
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
p (number of features) p (number of features) p (number of features)

@ JEEK outperforms the speed of the state-of arts significantly
faster (~ 5000x improvement);

@ JEEK obtains better AUC as the state-of-the-art;

@ JEEK obtains better AUC than JEEK-NK (no additional
knowledge).
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Empirical Results on Two Real-world Datasets

Matches vs. Time - [Genelnteract]
80 T T T T T

60 [~ N
1723
(0]
=
o
©
= JEEK-PPI []
40 |- JEEKDavid O[]
JEEKNK  +
W-SIMULE-PPI A
W-SIMULE-David
20 1 1 I I I

200 400 600 800 1000 1200 1400
Time (s)

(@)

Accuracy (%)

a o g a a o9
o N A~ OO 00 O

Accuracy vs. Time - [ABIDE]
T T T T

]

+

A

JEEK 0O

JEEK-NK

W-SIMULE A
NAK

+

10

20 30 40
Time (s)

(b)

50

@ (a). On real-world gene expression data about leukemia cells vs.
normal blood cells. Used multiple types of additional knowledge;
@ (b). On real-world Brain fMRI dataset: ABIDE. Using LDA as a

downstream classification for evaluating JEEK vs. baselines.

70/108



71/108



Outline

© Method I11: DIFFEE
@ Method
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Takes llI: Learning sparse changes between two
graphs

@ Each graph may be dense or sparse, differential net is sparse
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Proposed Method Ill: DIFFEE

@ Two cases : d (disease) & ¢ (control)

argmin] |6
0

Subject to: (6.1) A==

-~

10 = B(9)lloo < An

argmin||A||4
A
Subiject to:
18 = B* (X4, 6)lloe < An
(6.2)
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Proposed Method Ill: DIFFEE

Elementary Estimator (EE)

argminR(0)
0 _ (6.3)
Subject to: R* (6 — B*(¢)) < \q

EE R() | 6 On R*(-)
EE-sGGM | ||-]|1 | @ _ [T, ()] _ || - [loo
DIFFEE | |||}y | A ([Tv(Zd)]‘1 - [TV(ZC)]‘1) 11 oo

argmin || Al[5
A

- ~ (6.4)
Subject to: [|A — ([TV(Zd)]‘1 — [TV(ZC)]‘1) lloo < An

75/108



DIFFEE: Optimization Solution

@ Close form
A =S, (TWE) " = [TuEZ) ) (6.5)

[SA(A)]j = sign(Aj) max(|A;| — A, 0) (6.6)
@ GPU-parallelizable

ﬂ. — ) ,, Closed form
Pre-compute 0(p3) 0(p*)& GPU

Starting point Compute once
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DIFFEE: Computational Complexity

The — best| g1 | Taskll Task II

baseline of

Computational 3y g 4.5 3y

complexity O(Kp?) liter | O(K*p>) | O(p°)/ iter
Linear

Bottle neck SVD program- SVD
ming

Our 81 FASJEM | JEEK DIFFEE

proach

Computational on 4.0 3

complexity O(Kp?) / iter | O(K*p<) O(p°)

Parallelization | O(K)/iter | O(K?*) O(p°)

77/108



Summary

EE R() 9 O R0
EE-sGGM [ - Il Q T2’ |- oo
Task | | FASJEM | [|-|h + R’ | @° | inv[T,(E°)] | max(]| - [Jee, R™*)
Task I JEEK kw-norm | Q® | inv[T,(Z")] kw-dual
()]
Task Ill DIFFEE . A [ = oo
H H1 _[TV(ZC)]—1 H H
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Outline

© Method I11: DIFFEE

@ Results
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Results: Theoretical Analysis

@ Sharp convergence rate as the state-of-art

16k1a log p
K2 min(nc, nd)

1A — A%l <

32k1a klogp
K2 min(nc, nd)

1A — A% < (6.7)
64x1 ak log p

A— Ay <
18- ah= min(1e. 1)
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Results: Synthetic Data Results

(b) F1-Score [Model 2]
i I I T

(a) F1-Score [Model 1]
I T

0.03 - 0.7
Varyingp % * Varyingp X
Varyings < 0.6 Varyings < » -
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o N _di 05 . N _di - -
© 0,02 Varying n high-dim Vv : B © Varying n high-dm Vv 7y
= - = X
& A goar % B
@ A X @
k7] . % 0.3 - )? u
Q A o}
m 0.01 - . = o -4
. %70 v 02— _
oL ! ! oL ! ! ! ! !
0 0.01 0.02 0.03 0 01 02 03 04 05 06 07
DIFFEE DIFFEE
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Results: Synthetic Data Results

Time (log(s))

Time (log(s))

(a)Time vs. p-[Model 1]

(b)Time vs. p-[Model 2]

sparsity (ratio of non-zero entries)
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' > — ' —
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! ° !
! £ !
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0 100 200 300 400 500 0 100 200 300 400 500
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£
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82/108



Results: Real-world Data Results

@ Apply to Brain image data (fMRI)

@ Use the estimated different network in LDA

@ Compare the accuracy with the state-of-art methods

Method

DIFFEE

FusedGLasso

Diff-CLIME

Accuracy (%)

57.58%

56.90%

53.79%
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Outline

@ Discussion
@ Questions from Proposal
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Support Analysis Results

@ DIFFEE as an example

|A* = B*(Zd, Ze)|loo < An
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Support Analysis Results

@ DIFFEE as an example

|A* = B*(Zd, Ze)|loo < An

o I
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Support Analysis Results

@ DIFFEE as an example

|A* = B*(Zd, Ze)|loo < An

o I

Aj;=0=>A;;=0 (7.4)

e supp(A) C supp(A*) 86/108



Support Analysis Result

@ Additional Assumption

min |AL > 3||A* — BX(Zd, Z¢)][oo (7.5)
sesupp(A*)
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Support Analysis Result

@ Additional Assumption

min |AL > 3||A* — BX(Zd, Z¢)][oo (7.5)
sesupp(A*)

supp(A*) C supp(A) (7.6)
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Support Analysis Result

@ Additional Assumption:

min |AL > 3||A* — BX(Zd, Z¢)][oo (7.5)
sesupp(A*)

supp(A*) C supp(A) (7.6)

@ Combine the above results

supp(A*) = supp(A) (7.7)
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Standardized Covariance Matrices

@ Real world: Different tasks — different value scale
e e.g., fMRI vs RNA squencing

@ Problem: hard to choose )\, in different scales
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Standardized Covariance Matrices

@ Real world: Different tasks — different value scale
e e.g., fMRI vs RNA squencing

@ Problem: hard to choose )\, in different scales

@ Solution: Gevariance-matrices = Correlation matrices

The inverse of Correlation matrices have the same support set as the
inverse of covariance matrices

@ Nonparanormal extensions — Relax the Gaussian Assumption
@ Added in all the packages
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lteration number T

@ linearly converge method: T = O(nlog(+5;))
@ TOL is the error bound
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lteration number T

@ linearly converge method: T = O(nlog(+5;))
@ TOL is the error bound

@ FASJEM error bound: O('&P))

Ntot
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lteration number T

@ linearly converge method: T = O(nlog(+5;))
@ TOL is the error bound

@ FASJEM error bound: O('&P))

Ntot
’ — tot lo Nto
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Trade-off

@ proxy backward mapping still O(p?)

@ In practice, fast in our three tasks
@ Thanks to excellent low-level implementation

@ Not well performed in low-dimensional case

@ p' = max(n,p)
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Trade-off

(a)AUC vs. n - [hub,p=200,K=2] (b)AUC vs. n-[perturb,p=200,K=2]
0.8
7o. o
=) ¢
0 0.4
=) = )EEK ) -5 JEEK
< 5 -4 W-SIMULE < . -A-W-SIMULE
0. —+ JEEK-NK 0. —+ JEEK-NK
-4-)GL-hub -4 JGL-perturb
0 0
100 200 300 400 100 200 300 400
n (number of samples) n (number of samples)
15 (c)Time vs. n-[hub,p=200,K=2] 1§d)Time vs. n-[perturb,p=200,K=2]
-=JEEK -=)EEK
-A-W-SIMULE = -A-W-SIMULE
.- - w & -
4-JGL-hub 10 4-)GL-perturb
o
=
g
= 5
0 0
100 200 300 400 100 200 300 400
n (number of samples) n (number of samples)
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Outline

@ Discussion

@ Future works
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KW-norm for FASJEM

@ Revise the ¢4 norm in FASJEM to a KW-norm
KW-norm for FASJEM

R({Q"}) ZIIW(' o Q0|

_ ||Wtot Qtot‘H1

(7.8)

o {W{}: weights describing knowledge of each graph.
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Future work: FASJEM with additional knowledge —
FASJEM-K

FASJEM-K

argg)rnin || Wot © Quot||1 + €R'(Qsot)
tot

S.1||Wior © (Quot — iV(Ty(E10)))lloo < An (7.9)
R* (ot — IV(Ty(Zer))) < €An
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KW-norm for Differential Network: KEV-norm

@ Integrating both edge-level and node-level additional knowledge
through a novel regularization function R(-)

R(A) = [[We o Ap\g, |l +€el|Agy llgy 2

@ Gy is a node group.
@ WE represents the weights for edges.
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Future work: DIFFEE-K

@ Combine KEV-norm and Elementary Estimator

DIFFEE-K

arginin |We o Ap\g, |1 + €l|Ag, llgy 2
Subject to: || We o (& = ([T/(Ea)l ™ = [To(E)]™") ) lloo < An (7:11)

ella = (ITEN ™" = [T ") 13,2 < An
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Publications

@ FASJEM

@ A Fast and Scalable Joint Estimator for Learning
Multiple Related Sparse Gaussian Graphical Models,
B Wang, J Gao, Y Qi, AISTATS 2017
@ DIFFEE

@ Fast and Scalable Learning of Sparse Changes in
High-Dimensional Gaussian Graphical Model
Structure, B Wang, A Sekhon, Y Qi, AISTATS 2018

e W-SIMULE

@ A constrained! 1 minimization approach for
estimating multiple sparse Gaussian or
nonparanormal graphical models, B Wang, R Singh, Y Qi,
Machine Learning 106 (9-10), 1381-1417

@ A Constrained, Weighted-L1 Minimization Approach
for Joint Discovery of Heterogeneous Neural
Connectivity Graphs, C Singh, B Wang, Y Qi, Advances in
Modeling and Learning Interactions from Complex Data, NIPS 2017
Workshop
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Publications

e JEEK

@ A Fast and Scalable Joint Estimator for
Integrating Additional Knowledge in Learning
Multiple Related Sparse Gaussian Graphical Models,
B Wang, A Sekhon, Y Qi, ICML 2018

@ DIFFEE-K
@ A Fast and Scalable Estimator for Using
Additional Knowledge in Learning Sparse Structure

Change of High-Dimensional Gaussian Graphical

Models, B Wang, A Sekhon, Y Qi, submit to NIPS 2018
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R Package is Available !!!

@ The project website: http://jointggm.org/

@ R package "simule”:
@ install.packages ("simule")
@ demo (simule) !

@ R package "fasjem”:
@ install.packages ("fasjem")
@ demo (fasjem) !

@ R package "diffee”:
@ install.packages ("diffee")
@ demo (diffee) !

@ R package "jeek”:
@ install.packages ("jeek")
@ demo (jeek) !

@ A complete package "jointNet” will be ready by this summer.
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Back-up: Difficulty in combining FASJEM and JEEK

argmin|[W/°" o Q1|1 + || WE" 0 Q|| + eR/(Q)
Q;ot’Q%)t

Subject to: || W/ o (P — inv(T,(Z°)))|lse < An (7.12)
|WE o (1 — inv(Ty(£°1)))|oc < An
R*/(Qtot) S 6)\[7

@ Hard to optimize
@ Lose fast and scalable property
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Back-up: How to choose v in Tv(f)

@ line search
@ v from the set {0.001/[i =1,2,...,1000}
@ pick a value that makes Tv(f) and be invertible
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Back-up: Connecting to Bayesian Statistics

_ |Og(]P>(Q(")’X("), ol W/(I)j,k» Wsix))
o — log(det(QD )+ < o, £O)

+ 3 W19 ]+ WslQs; i)
j,k

(7.13)
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Back-up: Proximal algorithm Basics

@ proximity definition:
@ prox,(x) = argmin(h(u) + 3||u — x||3)
u

° arg)r(nin f(x) = g(x) + h(x)

@ proximal gradient descent:
o x() = prox, n(x*=1 — e 7 g(xk=1))
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Back-up: Proximal algorithm for FASJEM

TF,
TF,
TF,

(prox. ., ()i = {

Ti =Y, Ti >
0, |z;| <7
T+, T < =y
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Back-up: Proximal algorithm for FASJEM

TF 1
s Q

-
-
°

Tg = Ve llzall2 >

F¥ 3 PrO%alHlea (%) = { 0, lzll2 <7
TF, Q)
TF,
TFp

e 3
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Back-up: Proximal algorithm for FASJEM

TF, 1

TF,[ Q

%, Ti, [ — ai| <A
- ue proj\|12—0-“m</\= a; + Az >a;+ A
= = - a;i — ANz <a;— A
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Back-up: Proximal algorithm for FASJEM

PrOX, g, (2) = PrOjjjz_qj; <
g, ||lzg — agll2 < A

= { Aisain +ag llzg — agll2 > A

s u
TF,
TF, Q2
2 2 2
g
Vo A ORI
B.(g) = 21 22 2p
@ @ . @
v, b2 b2 . b2
W ue
(== =
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