Fast and Scalable Joint Estimators for Learning Sparse Gaussian Graphical Models from Heterogeneous Data with Additional Knowledge

Beilun Wang ${ }^{1}$
Advisor: Yanjun Qi ${ }^{1}$
Dissertation Committees:
Mahmoody Mohammad (Committee Chair) ${ }^{1}$
Xiaojin (Jerry) Zhu²
Farzad Farnoud ${ }^{1}$
Tingting Zhang ${ }^{1}$
${ }^{1}$ University of Virginia
${ }^{2}$ University of Wisconsin-Madison

August 24, 2018

Background

Background: Entity Graph

- Many applications need to know interactions among entities:
- Gene Interactions
- Brain connectivity

Background: Entity Graph

- Many applications need to know interactions among entities:
- Gene Interactions
- Brain connectivity
- Why to study the entity graph
- Understanding
- Diagnosis, e.g., marker
- Treatment, e.g., drug development.

Background: What Type of Edges? Correlation to Conditional dependency

A1: Children swim
A2: Weather is hot
A3: High sale of ice cream
A4: Wear less amount of clothes A5: High Electricity Consumption

Background: What Type of Edges? Correlation to Conditional dependency

Background: What Type of Edges? Correlation to

 Conditional dependency

Background: How to Infer Entity Graph?

- To measure conditional dependency interactions physically.
- Largely unknown and hard to measure physically.

Background: How to Infer Entity Graph?

- To measure conditional dependency interactions physically.
- Largely unknown and hard to measure physically.
- \#Physical check for all possible conditional dependency edges $=2^{p}$ (binary experiments)
- For example, $p=160$ important regions in human brain
- For example, $p=30000$ genes in human cell

Background: How to Infer Entity Graph?

- To measure conditional dependency interactions physically.
- Largely unknown and hard to measure physically.
- \#Physical check for all possible conditional dependency edges $=2^{p}$ (binary experiments)
- For example, $p=160$ important regions in human brain
- For example, $p=30000$ genes in human cell
- Much more than Trillions $\left(2^{40}\right)$ of biological experiments

Background: Entity graphs from Observed Samples

 (Entity as Feature)- Trillions of biological experiments \Longrightarrow

Data-driven approach

- Experiments (not physically check)
\Longrightarrow Data \Longrightarrow Entity Graph

Context/Task(1)

Background: Entity graphs from Observed Samples (Entity as Feature)

- Trillions of biological experiments \Longrightarrow

Data-driven approach

- Experiments (not physically check)
\Longrightarrow Data \Longrightarrow Entity Graph
- n experiments $\rightarrow n$ data samples
- Each sample is a snapshot of all the entities.
- Each sample has measurements of p features/entities.

Context/Task(1)

Background: Entity graphs from Observed Samples (Entity as Feature)

- Trillions of biological experiments \Longrightarrow

Data-driven approach

- Experiments (not physically check)
\Longrightarrow Data \Longrightarrow Entity Graph
- n experiments $\rightarrow n$ data samples
- Each sample is a snapshot of all the entities.
- Each sample has measurements of p features/entities.

Context/Task(1)

- n data samples is enough \rightarrow a well estimated entity graph of p when $n \gg p$ (low-dimensional).
- $p>n$ (high-dimensional) needs novel approaches

Background: Entity graphs from Heterogeneous Data (Entity as Feature)

- Most applications have heterogeneous samples.
- For example:
- Totally $n_{\text {tot }}$ data samples
- From K different but related contexts, each has n_{i} data samples

Context/Task(1)

Background: Entity graphs from Heterogeneous Data

Context/Task(1)

Case I:

Case II:

Task I: Learning multiple related graphs

- Learning multiple related graphs
- E.g., TF-TF interactions
- Three graphs are similar

Task II: Integrating additional knowledge

- Integrating known knowledge in Learning multiple related graphs - E.g., known knowledge in Brain Connection

Data

Joint infer

Additional Knowledge

Graphs

Task III: Learning sparse changes between two graphs

- A very interesting task:
- Find differences in the brains of people with diseases, e.g. Autism, Alzheimer's
- Use for understanding
- Use for diagnosis

Notations

$X^{(i)} i$-th Data matrix.
$\Sigma^{(i)} i$-th Covariance matrix.
$\Omega^{(i)} i$-th Inverse of covariance matrix (precision matrix).
p The total number of feature variables.
$n_{\text {tot }}$ The total number of samples.
$X^{\text {tot }}$ the concatenation of all Data matrices.
$\Sigma^{\text {tot }}$ the concatenation of all Covariance matrices.
$\Omega^{\text {tot }}$ the concatenation of all Inverse of covariance matrices (precision matrices).
$W_{l}^{\text {tot }}\left(W_{l}^{(1)}, W_{l}^{(2)}, \ldots, W_{l}^{(K)}\right)$
$W_{S}^{\text {tot }}\left(W_{S}, W_{S}, \ldots, W_{S}\right)$

Motivation

Motivation: More Num of features (p) to consider

- Yeast gene: 6K

Human gene: 30K

- Words interaction, millions of words ($p>1,000,000$)

Motivation: More num of tasks (K) to consider

ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human genome. Nature, 489(7414):57-74, 2012.

Motivation: Limitation I - Slow Computation

The best baseline of	Task I	Task II	Task III
Computational complexity	$O\left(K p^{3}\right) /$ iter	$O\left(K^{4} p^{5}\right)$	$O\left(p^{3}\right) /$ iter
Bottle neck	SVD	Linear program- ming	SVD

- If $K=91$ and $p=30 \mathrm{~K}$

The best baseline of	Task I	Task II	Task III
Time	3.5 days / iter	6 trillion years	1 hour/ iter

- Can we have a $O\left(p^{2}\right)$ method?

Motivation: Limitation II - No consideration of parallelization

- Reduce $O\left(p^{2}\right)$ to $O(1)$.

Motivation: Limitation III: Lack of error bound analysis

- $\left\|\widehat{\theta}-\theta^{*}\right\|$
- Missing analysis under a high-dimensional setting
($p \geq n$)
- No sacrifices of the accuracy from speeding-up and scaling-up the algorithm

Our Aim: Fast and Scalable estimators for three types of joint graphs estimation

- Fast and scalable estimators for the three tasks
- Parallelizable algorithms
- Integrating additional knowledge
- Sharp convergence rate

Solution for Limitations - Elementary Estimator

Background: summary of the previous optimization strategy

- e.g., ADMM algorithm

Elementary Estimator (EE) for joint sGGMs tasks

- Previous studies:

- Elementary Estimator:

Elementary Estimator (EE): Step I - Backward mapping

- Backward mapping $\mathcal{B}^{*}(\widehat{\phi})$ of the parameter (Solution of Vanilla Maximum Likelihood Estimator (MLE))
- Vanilla MLE: $\operatorname{argmax} \mathcal{L}(\theta)$
θ
- Already close to true parameter
- But without assumptions e.g., sparse
- For instance, linear regression solution $\left(X^{\top} X\right)^{-1} X^{\top} Y$

Elementary Estimator: Step II - Optimization formulation

Elementary Estimator (EE)

$$
\underset{\theta}{\operatorname{argmin}} \mathcal{R}(\theta)
$$

Subject to: $\mathcal{R}^{*}\left(\theta-\mathcal{B}^{*}(\widehat{\phi})\right) \leq \lambda_{n}$

- Let $\mathcal{R}(\cdot)=\|\cdot\|_{1}$

$$
\begin{gathered}
\Downarrow \\
\underset{\theta}{\operatorname{argmin}}\|\theta\|_{1}
\end{gathered}
$$

Subject to: $\left\|\theta-\mathcal{B}^{*}(\widehat{\phi})\right\|_{\infty} \leq \lambda_{n}$

- Easy to prove the sharp convergence rate when \mathcal{R} and \mathcal{B}^{*} satisfy certain conditions.

EE-Benefit: Fast and scalable solution

- A soft-thresholding operator (closed form)
- Closed form \& $O\left(p^{2}\right)$
- Easy to parallelize in GPU

$$
\begin{gather*}
\widehat{\theta}=S_{\lambda_{n}}\left(\mathcal{B}^{*}(\widehat{\phi})\right) \\
{\left[S_{\lambda}(A)\right]_{i j}=\operatorname{sign}\left(A_{i j}\right) \max \left(\left|A_{i j}\right|-\lambda, 0\right)} \tag{3.3}
\end{gather*}
$$

- Element-wise

$$
\mathbf{\Sigma}=\operatorname{Cov}(\mathbf{X})=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n 1} & \sigma_{n 2} & \cdots & \sigma_{n n}
\end{array}\right] \quad \mathbf{\Sigma}=\operatorname{Cov}(\mathbf{X})=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n 1} & \sigma_{n 2} & \cdots & \sigma_{n n}
\end{array}\right] \quad \mathbf{\Sigma}=\operatorname{Cov}(\mathbf{X})=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{n 1} & \sigma_{n 2} & \cdots & \sigma_{n n}
\end{array}\right]
$$

Apply same operator
Independent calculation

Background: sparse Gaussian Graphical Model (sGGM) to derive Conditional Independence Graph from data

EE-GM: Elementary Estimator for sGGM

- Vanilla MLE: $\operatorname{argmin}-\log (\operatorname{det}(\Omega))+\langle\Omega, \Sigma\rangle$ Ω
- Backward mapping of Ω is Σ^{-1}
- Not invertible when $p \geq n$

EE-GM: Elementary Estimator for sGGM

- Vanilla MLE: $\operatorname{argmin}-\log (\operatorname{det}(\Omega))+<\Omega, \Sigma>$ Ω
- Backward mapping of Ω is Σ^{-1}
- Not invertible when $p \geq n$
- Need apporximated backward mapping
- proxy backward mapping $\widehat{\theta}_{n} \approx \mathcal{B}^{*}(\widehat{\phi})$
- In sGGM, $\widehat{\theta}_{n}=\left[T_{v}(\hat{\Sigma})\right]^{-1}$

EE-GM: Elementary Estimator for sGGM

$$
\begin{equation*}
\underset{\theta}{\operatorname{argmin}}\|\theta\|_{1} \tag{3.4}
\end{equation*}
$$

Subject to: $\left\|\theta-\mathcal{B}^{*}(\widehat{\phi})\right\|_{\infty} \leq \lambda_{n}$

$$
\widehat{\theta}_{n}=\left[T_{v}(\widehat{\Sigma})\right]^{-1}
$$

EE-sGGM

$$
\begin{equation*}
\underset{\Omega}{\operatorname{argmin}} \mid\|\Omega\|_{1, \text { off }} \tag{3.5}
\end{equation*}
$$

$$
\text { subject to: }\left\|\Omega-\left[T_{v}(\widehat{\Sigma})\right]^{-1}\right\|_{\infty, \text { off }} \leq \lambda_{n}
$$

- | EE | $\mathcal{R}(\cdot)$ | θ | $\widehat{\theta}_{n}$ | \mathcal{R}^{*} |
| :---: | :---: | :---: | :---: | :---: |
| EE-sGGM | $\\|\cdot\\|_{1}$ | Ω | $\left[T_{v}(\widehat{\Sigma})\right]^{-1}$ | $\\|\cdot\\|_{\infty}$ |

EE-Benefit: Easy to prove error bound

- Error bound:

$$
\begin{align*}
& \left\|\widehat{\theta}-\theta^{*}\right\|_{\infty} \leq 2 \lambda_{n} \\
& \left\|\widehat{\theta}-\theta^{*}\right\|_{F} \leq 4 \sqrt{s} \lambda_{n} \tag{3.6}\\
& \left\|\widehat{\theta}-\theta^{*}\right\|_{1} \leq 8 s \lambda_{n}
\end{align*}
$$

- Condition:

$$
\lambda_{n} \geq\left\|\widehat{\theta}_{n}-\theta^{*}\right\|_{\infty}
$$

- Constant: s is the num of non-zero
 entries.

Method I: FASJEM

Outline

Background

Motivation

Solution for Limitations - Elementary Estimator

(4) Method I: FASJEM

- Background
- Method
- Results

5. Method II: JEEK

- Background
- Method
- Results
(6) Method III: DIFFEE
- Method
- Results
(7) Discussion
- Questions from Proposal
- Future works

Task I: Learning multiple related graphs

- Learning multiple related graphs
- E.g., TF-TF interactions
- Three graphs are similar

Background: Multi-task sGGMs

- A pipeline to infer Multiple Related Graphs from heterogeneous datasets $\mathbf{X}^{(1)}, \ldots \mathbf{X}^{(K) 1}$.

1.05	-0.23	0.05	-0.02	0.05
-0.23	1.45	-0.25	0.10	-0.25
0.05	-0.25	1.10	-0.24	0.10
-0.02	0.10	-0.24	1.10	-0.24
0.05	-0.25	0.10	-0.24	1.10

1	0.2	0	0	0
0.2	1	0.2	0	0.2
0	0.2	1	0.2	0
0	0	0.2	1	0.2
0	0.2	0	0.2	1

$\xrightarrow[\begin{array}{l}\text { Sparsity } \\ \text { pattern }\end{array}]{\text { Decode }}$

Multi-task

GGM

1	0.2	0	0	0	Decode
0.2	1	0.2	0	0	
0	0.2	1	0.2	0	
0	0	0.2	1	0.2	pattern
0	0	0	0.2	1	

${ }^{1} X^{\text {tot }}$: the concatenation of $\left(X^{(1)}, X^{(2)}, \ldots, X^{(K)}\right)$.
$\Sigma^{\text {tot }}$: the concatenation of $\left(\Sigma^{(1)}, \Sigma^{(2)}, \ldots, \Sigma^{(K)}\right)$.
$\Omega^{\text {tot }}$: the concatenation of $\left(\Omega^{(1)}, \Omega^{(2)}, \ldots, \Omega^{(K)}\right)$.

Background: Joint Graphical Lasso

Graphical Lasso

$$
\begin{equation*}
\underset{\Omega}{\operatorname{argmin}}-\log \operatorname{det}(\Omega)+<\Omega, \Sigma>+\lambda_{n}\|\Omega\|_{1} \tag{4.1}
\end{equation*}
$$

- Add $\mathcal{R}^{\prime}(\cdot)$

Joint Graphical Lasso

$$
\begin{align*}
\underset{\Omega^{(i)}>0}{\operatorname{argmin}} & \sum_{i}\left(-L\left(\Omega^{(i)}\right)+\lambda_{1} \sum_{i}\left\|\Omega^{(i)}\right\|_{1}\right. \tag{4.2}\\
& +\lambda_{2} \mathcal{R}^{\prime}\left(\Omega^{(1)}, \Omega^{(2)}, \ldots, \Omega^{(K)}\right)
\end{align*}
$$

- $\Omega_{t o t}=\left(\Omega^{(1)}, \Omega^{(2)}, \ldots, \Omega^{(K)}\right)$.

Outline

Background

Motivation
Solution for Limitations - Elementary Estimator
4) Method I: FASJEM

- Background
- Method
- Results
(5) Method II: JEEK
- Background
- Method
- Results

5 Method III: DIFFEE

- Method
- Results

7. Discussion

- Questions from Proposal
- Future works

Enforcing relatedness of multiple graphs through Regularization: FASJEM-norm

EE-sGGM

$$
\underset{\Omega}{\operatorname{argmin}}\left|\mid \Omega \|_{1,, \text { off }}\right.
$$

subject to: $\left\|\Omega-\left[T_{v}(\widehat{\Sigma})\right]^{-1}\right\|_{\infty, \text { off }} \leq \lambda_{n}$

- Add $\mathcal{R}^{\prime}(\cdot)$

FASJEM-norm

$$
\begin{equation*}
\mathcal{R}\left(\Omega_{t o t}\right)=\left\|\Omega_{t o t}\right\|_{1}+\mathcal{R}^{\prime}\left(\Omega_{t o t}\right) \tag{4.4}
\end{equation*}
$$

Elementary Estimator (EE)

$$
\underset{o}{\operatorname{argmin}} \mathcal{R}(\theta)
$$

$$
\begin{equation*}
\theta \tag{4.5}
\end{equation*}
$$

Subject to: $\mathcal{R}^{*}\left(\theta-\mathcal{B}^{*}(\widehat{\phi})\right) \leq \lambda_{n}$

EE	$\mathcal{R}(\cdot)$	θ	$\hat{\theta}_{n}$	$\mathcal{R}^{*}(\cdot)$				
EE-sGGM	$\\|\cdot\\|_{1}$	Ω	$\left[T_{v}(\bar{\Sigma})\right]^{-1}$	$\\|\cdot\\|_{\infty}$				
FASJEM	$\\|\cdot\\|_{1}+\mathcal{R}^{\prime}$	$\Omega^{\text {tot }}$	$\operatorname{inv}\left[T_{v}\left(\widehat{\Sigma}^{\text {tot }}\right)\right]$	$\max \left(\\|\cdot\\|_{\infty}, \mathcal{R}^{\prime *}\right)$				

FASJEM

$$
\begin{align*}
& \underset{\Omega_{\text {tot }}}{\operatorname{argmin}}\left\|\Omega_{\text {tot }}\right\|_{1}+\mathcal{R}^{\prime}\left(\Omega_{\text {tot }}\right) \\
& \text { s.t. }\left\|\Omega_{\text {tot }}-\operatorname{inv}\left(T_{v}\left(\widehat{\Sigma}_{\text {tot }}\right)\right)\right\|_{\infty} \leq \lambda_{n} \\
& \mathcal{R}^{*}\left(\Omega_{\text {tot }}-\operatorname{inv}\left(T_{v}\left(\widehat{\Sigma}_{\text {tot }}\right)\right)\right) \leq \lambda_{n} \tag{4.6}
\end{align*}
$$

FASJEM: Variations

- FASJEM-G:

$$
\begin{align*}
& \mathcal{R}^{\prime}(\cdot)=\|\cdot\|_{\mathcal{G}, 2} \\
& \left\|\Omega_{\text {tot }}\right\|_{\mathcal{G}, 2}=\sum_{j=1}^{p} \sum_{k=1}^{p}\left\|\left(\Omega_{j, k}^{(1)}, \Omega_{j, k}^{(2)}, \ldots, \Omega_{j, k}^{(i)}, \ldots, \Omega_{j, k}^{(K)}\right)\right\|_{2} \tag{4.7}
\end{align*}
$$

- FASJEM-I:

$$
\begin{align*}
& \mathcal{R}^{\prime}(\cdot)=\|\cdot\|_{\mathcal{G}, \infty} \\
& \left\|\Omega_{\text {tot }}\right\|_{\mathcal{G}, \infty}=\sum_{j=1}^{p} \sum_{k=1}^{p}\left\|\left(\Omega_{j, k}^{(1)}, \Omega_{j, k}^{(2)}, \ldots, \Omega_{j, k}^{(i)}, \ldots, \Omega_{j, k}^{(K)}\right)\right\|_{\infty} \tag{4.8}
\end{align*}
$$

FASJEM: Optimization Solution

- JGL solution:

FASJEM: Optimization Solution

- JGL solution:

- FASJEM solution:

FASJEM: Optimization Solution - Proximal algorithm

- FASJEM solution:

- In each iteration, a proximal operator
- Element-wise operator, $O\left(p^{2}\right)$

$$
\begin{aligned}
& \operatorname{prox}_{\gamma\|\cdot\|_{1}}(x) \\
& =\left\{\begin{array}{cll}
x_{j, k}^{(i)}-\gamma, x_{j, k}^{(i)}>\gamma \\
0,\left|x_{j, k}^{(i)}\right| \leq \gamma & & \operatorname{prox}_{\gamma\|\cdot\|_{1}}(x) \\
x_{j, k}^{(i)}+\gamma, x_{j, k}^{(i)}<-\gamma & & =\max \left(\left(x_{j, k}^{(i)}-\gamma\right), 0\right)(4.10)
\end{array}\right.
\end{aligned}
$$

(4.9)

FASJEM: Optimization Solution - Proximal algorithm

- FASJEM solution:

- In each iteration, a proximal operator
- Element-wise operator, $O\left(p^{2}\right)$
- GPU-parallelizable $O(1)$
- e.g., proximity of ℓ_{1}
$\operatorname{prox}_{\gamma\|\cdot\| \|_{1}}(x)$
$=\left\{\begin{array}{r}x_{j, k}^{(i)}-\gamma, x_{j, k}^{(i)}>\gamma \\ 0,\left|x_{j, k}^{(i)}\right| \leq \gamma \\ x_{j, k}^{(i)}+\gamma, x_{j, k}^{(i)}<-\gamma\end{array}\right.$
$\operatorname{prox}_{\gamma\|\cdot\| \|_{1}}(x)$
$=\max \left(\left(x_{j, k}^{(i)}-\gamma\right), 0\right)(4.10)$
$+\min \left(0,\left(x_{j, k}^{(i)}+\gamma\right)\right)$
(4.9)

FASJEM: Computational Complexity

The best baseline of	Task I	Task II	Task III
Computational complexity	$O\left(K p^{3}\right) /$ iter	$O\left(K^{4} p^{5}\right)$	$O\left(p^{3}\right) /$ iter
Bottle neck	SVD	Linear program- ming	SVD
Our ap- proach	FASJEM		
Computational complexity	$O\left(K p^{2}\right) /$ iter		
Parallelization	$O(K) /$ iter		

Summary

	EE	$\mathcal{R}(\cdot)$	θ	$\hat{\theta}_{n}$	$\mathcal{R}^{*}(\cdot)$				
	EE-sGGM	$\\|\cdot\\|_{1}$	Ω	$\left[T_{v}(\bar{\Sigma})\right]^{-1}$	$\\|\cdot\\|_{\infty}$				
Task I	FASJEM	$\\|\cdot\\|_{1}+\mathcal{R}^{\prime}$	$\Omega^{\text {tot }}$	$\operatorname{inv}\left[T_{v}\left(\bar{\Sigma}^{\text {tot }}\right)\right]$	$\max \left(\\|\cdot\\|_{\infty}, \mathcal{R}^{\prime *}\right)$				
Task II									
Task III									

Outline

Background
 Motivation
 Solution for Limitations - Elementary Estimator

4 Method I: FASJEM

- Background
- Method
- Results

5) Method II: JEEK

- Background
- Method
- Results

6 Method III: DIFFEE

- Method
- Results
(7) Discussion
- Questions from Proposal
- Future works

Results: Theoretical Analysis

- $p^{\prime}=\max \left(K p, n_{\text {tot }}\right)$
- Error Bound: $\left\|\widehat{\Omega}_{\text {tot }}-\Omega_{\text {tot }}^{*}\right\|_{F} \leq 32 \frac{4 \kappa_{1} a}{\kappa_{2}} \sqrt{\frac{s \log p^{\prime}}{n_{\text {tot }}}}$

Multi-task:	K Single-task:
$O\left(\frac{\log (K p)}{n_{\text {tot }}}\right)$	$\left.O\left(\frac{\log p}{n_{i}}\right)\right)$

- By assuming $n_{i}=\frac{n_{\text {tot }}}{K}$:

Results: Theoretical Analysis

- $p^{\prime}=\max \left(K p, n_{\text {tot }}\right)$
- Error Bound: $\left\|\widehat{\Omega}_{\text {tot }}-\Omega_{\text {tot }}^{*}\right\|_{F} \leq 32 \frac{4 \kappa_{1} a}{\kappa_{2}} \sqrt{\frac{s \log p^{\prime}}{n_{\text {tot }}}}$

Multi-task:	K Single-task:
$O\left(\frac{\log (K p)}{n_{\text {tot }}}\right)$	$\left.O\left(\frac{\log p}{n_{i}}\right)\right)$

- By assuming $n_{i}=\frac{n_{\text {tot }}}{K}$:
- We can conclude that $\frac{\log (K p)}{n_{\text {tot }}}<K \frac{\log p}{n_{\text {tot }}}$

Results: Theoretical Analysis

- $p^{\prime}=\max \left(K p, n_{\text {tot }}\right)$
- Error Bound: $\left\|\widehat{\Omega}_{\text {tot }}-\Omega_{\text {tot }}^{*}\right\|_{F} \leq 32 \frac{4 \kappa_{1} a}{\kappa_{2}} \sqrt{\frac{s \log p^{\prime}}{n_{\text {tot }}}}$

Multi-task:	K Single-task:
$O\left(\frac{\log (K p)}{n_{\text {tot }}}\right)$	$\left.O\left(\frac{\log p}{n_{i}}\right)\right)$

- By assuming $n_{i}=\frac{n_{\text {tot }}}{K}$:
- We can conclude that $\frac{\log (K p)}{n_{\text {tot }}}<K \frac{\log p}{n_{\text {tot }}}$
- This indicates that the multi-task estimator is better!!!

Results: Synthetic Data generation process

Results: Synthetic Data Results

Results: Real-world Data Results - Number of Matched Edges versus the Existing Domain Databases

- Validation by counting the overlapped interactions according to the existing bio-databases (MInact)

Method II: JEEK

Outline

Background

Motivation
Solution for Limitations - Elementary Estimator
Method I: FASJEM

- Background
- Method
- Results
(5) Method II: JEEK
- Background
- Method
- Results
(3) Method III: DIFFEE
- Method
- Results

7. Discussion

- Questions from Proposal
- Future works

Task II: Integrating additional knowledge

- Integrating known knowledge in Learning multiple related graphs - E.g., known knowledge in Brain Connection

Data

Joint infer

Additional Knowledge

Graphs

Solution: Using Knowledge as Weight in Regularization (KW-norm)

- Integrating additional knowledge through a novel regularization function $\mathcal{R}(\cdot)$

KW-norm

$$
\begin{equation*}
\mathcal{R}\left(\left\{\Omega^{(i)}\right\}\right)=\sum_{i=1}^{K}\left\|W_{l}^{(i)} \circ \Omega_{l}^{(i)}\right\|_{1}+\sum_{i=1}^{K}\left\|W_{S} \circ \Omega_{S}\right\|_{1} \tag{5.1}
\end{equation*}
$$

- $\Omega^{(i)}=\Omega_{l}^{(i)}+\Omega_{s}$
- $\left\{W_{l}^{(i)}\right\}$: weights describing knowledge of each individual graph.
- W_{S} : weights describing knowledge of the shared graph.

Background: Shared and Task-Specific Subgraph Representation

Context/Task(1)

$\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{p}^{(1)}\right) \in \mathbb{R}^{p}$

Ω^{1}

Context/Task(2)

- Know both
- House keeping interactions
- Context-specific networks

Solution: Using Knowledge as Weight in Regularization (KW-norm)

- Use tot notation

KW-norm

$$
\begin{equation*}
\mathcal{R}\left(\Omega^{\text {tot }}\right)=\left\|W_{l}^{\text {tot }} \circ \Omega_{l}^{\text {tot }}\right\|_{1}+\left\|W_{S}^{\text {tot }} \circ \Omega_{S}^{\text {tot }}\right\|_{1} \tag{5.2}
\end{equation*}
$$

- WIt : weights describing knowledge of each individual graph.
- $W_{S}^{\text {tot }}$: weights describing knowledge of the shared graph.

Solution: Using Knowledge as Weight in Regularization (KW-norm)

- Use tot notation

KW-norm

$$
\begin{equation*}
\mathcal{R}\left(\Omega^{\text {tot }}\right)=\left\|W_{l}^{\text {tot }} \circ \Omega_{l}^{\text {tot }}\right\|_{1}+\left\|W_{S}^{\text {tot }} \circ \Omega_{S}^{\text {tot }}\right\|_{1} \tag{5.2}
\end{equation*}
$$

- $W_{l}^{\text {tot }}$: weights describing knowledge of each individual graph.
- $W_{S}^{\text {tot }}$: weights describing knowledge of the shared graph.
- No need to design knowledge-specific optimization
- KW-norm is flexible.

Example I: KW-norm representing the edge-level knowledge

- e.g., Spatial distance among brain regions;

$G^{(1)}$

$W_{I}^{(1)}$

Example II: KW-norm describing the node-level knowledge

- e.g., X_{2} is a known hub node;

	1	2	3	4	5
1		$1 / \gamma$	1	1	1
2	$1 / \gamma$		$1 / \gamma$	$1 / \gamma$	$1 / \gamma$
3	1	$1 / \gamma$		1	1
4	1	$1 / \gamma$	1		1
5	1	$1 / \gamma$	1	1	
W_{S}					

Background: SIMULE

- Decompose $\Omega^{(i)}=\Omega_{l}^{(i)}+\Omega_{S}$
- An ℓ_{1} minimization approach

$$
\begin{aligned}
& \widehat{\Omega}_{l}^{(1)}, \widehat{\Omega}_{l}^{(2)}, \ldots, \widehat{\Omega}_{l}^{(K)}, \widehat{\Omega}_{S}= \\
& \underset{\Omega_{l}^{(i)}, \Omega_{S}}{\operatorname{argmin}} \sum_{i}\left\|\Omega_{l}^{(i)}\right\|_{1}+\epsilon K\left\|\Omega_{S}\right\|_{1}
\end{aligned}
$$

Subject to: $\left\|\Sigma^{(i)}\left(\Omega_{l}^{(i)}+\Omega_{S}\right)-I\right\|_{\infty} \leq \lambda_{n}, i=1, \ldots, K$

Background: WSIMULE: A weighted SIMULE estimator

SIMULE

$$
\widehat{\Omega}_{l}^{(1)}, \widehat{\Omega}_{l}^{(2)}, \ldots, \widehat{\Omega}_{l}^{(K)}, \widehat{\Omega}_{S}=\underset{\Omega_{l}^{(i)}, \Omega_{S}}{\operatorname{argmin}} \sum_{i}\left\|\Omega_{l}^{(i)}\right\|_{1}+\epsilon K\left\|\Omega_{S}\right\|_{1}
$$

Subject to: $\left\|\Sigma^{(i)}\left(\Omega_{l}^{(i)}+\Omega_{S}\right)-I\right\|_{\infty} \leq \lambda_{n}, i=1, \ldots, K$

- ADD $W_{l}^{(i)}, W_{S}$
\Downarrow

W-SIMULE

$$
\begin{equation*}
\widehat{\Omega}_{l}^{(1)}, \ldots, \widehat{\Omega}_{l}^{(K)}, \widehat{\Omega}_{S}=\sum_{i}^{\operatorname{argmin}}\left\|W_{l}^{(i)} \circ \Omega_{S} . \Omega_{l}^{(i)}\right\|_{1}+K\left\|W_{S} \circ \Omega_{S}\right\|_{1} \tag{5.3}
\end{equation*}
$$

Subject to: $\left\|\Sigma^{(i)}\left(\Omega_{l}^{(i)}+\Omega_{S}\right)-I\right\|_{\infty} \leq \lambda, i=1, \ldots, K$.

Outline

Background

Motivation
Solution for Limitations - Elementary Estimator
Method I: FASJEM

- Background
- Method
- Results
(5) Method II: JEEK
- Background
- Method
- Results
(6) Method III: DIFFEE
- Method
- Results
(7) Discussion
- Questions from Proposal
- Future works

Proposed Method: Combine EE and KW-norm

Elementary Estimator

$$
\begin{equation*}
\underset{\theta}{\operatorname{argmin}} \mathcal{R}(\theta) \tag{5.4}
\end{equation*}
$$

Subject to: $\mathcal{R}^{*}\left(\theta-\mathcal{B}^{*}(\widehat{\phi})\right) \leq \lambda_{n}$

$$
+
$$

KW-norm

$$
\begin{equation*}
\mathcal{R}\left(\Omega^{\text {tot }}\right)=\left\|W_{l}^{\text {tot }} \circ \Omega_{l}^{\text {tot }}\right\|_{1}+\left\|W_{S}^{\text {tot }} \circ \Omega_{S}^{\text {tot }}\right\|_{1} \tag{5.5}
\end{equation*}
$$

Proposed Method: Joint Elementary Estimator incorporating additional Knowledge (JEEK)

EE	$\mathcal{R}(\cdot)$	θ	$\widehat{\theta}_{n}$	$\mathcal{R}^{*}(\cdot)$				
EE-sGGM	$\\|\cdot\\|_{1}$	Ω	$\left[T_{v}(\hat{\Sigma})\right]^{-1}$	$\\|\cdot\\|_{\infty}$				
JEEK	kw-norm	$\Omega^{\text {tot }}$	$\operatorname{inv}\left[T_{v}\left(\widehat{\Sigma}^{\text {tot }}\right)\right]$	kw -dual				

$\operatorname{argmin}\left\|W_{l}^{\text {tot }} \circ \Omega_{I}^{\text {tot }}\right\|_{1}+\left\|W_{S}^{\text {tot }} \circ \Omega_{S}^{\text {tot }}\right\|$
$\Omega_{l}^{\text {tot }}, \Omega_{s}^{\text {tot }}$
Subject to: $\left\|W_{l}^{\text {tot }} \circ\left(\Omega^{\text {tot }}-\operatorname{inv}\left(T_{v}\left(\widehat{\Sigma}^{\text {tot }}\right)\right)\right)\right\|_{\infty} \leq \lambda_{n}$

$$
\begin{align*}
& \left\|W_{S}^{\text {tot }} \circ\left(\Omega^{\text {tot }}-\operatorname{inv}\left(T_{v}\left(\hat{\Sigma}^{\text {tot }}\right)\right)\right)\right\|_{\infty} \leq \lambda_{n} \tag{5.6}\\
& \Omega^{\text {tot }}=\Omega_{S}^{\text {tot }}+\Omega_{l}^{\text {tot }}
\end{align*}
$$

Proposed method: JEEK - Solution

- Fast and Scalable solution ${ }^{2}-p^{2}$ small linear programming subproblems with only $K+1$ variables:

$$
\begin{gathered}
\underset{a_{i}, b}{\operatorname{argmin}} \sum_{i}\left|w_{i} a_{i}\right|+K\left|w_{s} b\right| \\
\text { Subject to: }\left|a_{i}+b-c_{i}\right| \leq \frac{\lambda_{n}}{\min \left(w_{i}, w_{s}\right)}, \\
i=1, \ldots, K
\end{gathered}
$$

$$
\begin{aligned}
{ }^{2} a_{i} & : \\
b: & \left.=\Omega_{j, k}^{(i)} \text { (the }\{j, k\} \text {-th entry of } \Omega^{(i)}\right) \\
c_{i} & \left.=\left[T_{v}\left(\tilde{\Sigma}^{(i)}\right)\right]\right]_{j, k}^{-1} . \\
W_{j, k}^{(i)} & =w_{i} \text { and } W_{j, k}^{S}=w_{s} .
\end{aligned}
$$

Why JEEK is better

- Rich and flexible for integrating additional knowledge
- e.g., spatial, anatomy, hub, pathway, location, known edges;

Why JEEK is better

- Rich and flexible for integrating additional knowledge
- e.g., spatial, anatomy, hub, pathway, location, known edges;
- Parallelizable optimization with small sub-problems.

Why JEEK is better

- Rich and flexible for integrating additional knowledge
- e.g., spatial, anatomy, hub, pathway, location, known edges;
- Parallelizable optimization with small sub-problems.
- Theoretical guaranteed

JEEK: Computational Complexity

The best baseline of	Task I	Task II	Task III
Computational complexity	$O\left(K p^{3}\right) /$ iter	$O\left(K^{4} p^{5}\right)$	$O\left(p^{3}\right) /$ iter
Bottle neck	SVD	Linear program- ming	SVD
Our ap- proach	FASJEM	JEEK	
Computational complexity	$O\left(K p^{2}\right) /$ iter	$O\left(K^{4} p^{2}\right)$	
Parallelization	$O(K) /$ iter	$O\left(K^{4}\right)$	

Summary

	EE	$\mathcal{R}(\cdot)$	θ	$\hat{\theta}_{n}$	$\mathcal{R}^{*}(\cdot)$				
	EE-sGGM	$\\|\cdot\\|_{1}$	Ω	$\left[T_{v}(\bar{\Sigma})\right]^{-1}$	$\\|\cdot\\|_{\infty}$				
Task I	FASJEM	$\\|\cdot\\|_{1}+\mathcal{R}^{\prime}$	$\Omega^{\text {tot }}$	$\operatorname{inv}\left[T_{v}\left(\bar{\Sigma}^{\text {tot }}\right)\right]$	$\max \left(\\|\cdot\\|_{\infty}, \mathcal{R}^{\prime *}\right)$				
Task II	JEEK	kw-norm	$\Omega^{\text {tot }}$	$\operatorname{inv}\left[T_{v}\left(\hat{\Sigma}^{\text {tot }}\right)\right]$	kw -dual				
Task III									

Outline

Background

Motivation
Solution for Limitations - Elementary Estimator
Method I: FASJEM

- Background
- Method
- Results
(5) Method II: JEEK
- Background
- Method
- Results
(6) Method III: DIFFEE
- Method
- Results
(7) Discussion
- Questions from Proposal
- Future works

Theoretical Results

- Sharp convergence rate as the state-of-art

$$
\begin{align*}
& \left\|\widehat{\Omega}^{\text {tot }}-\Omega^{\text {tot }}\right\|_{F} \leq 4 \sqrt{k_{i}+k_{s}} \lambda_{n} \\
& \max \left(\left\|W_{l}^{\text {tot }} \circ\left(\widehat{\Omega}^{\text {tot }}-\Omega^{\text {tot } t^{*}}\right)\right\|_{\infty}, \| W_{s}^{\text {tot }} \circ\left(\widehat{\Omega}^{\text {tot }}-\Omega^{\text {tot }} \|_{\infty}\right) \leq 2 \lambda_{n}\right. \tag{5.8}\\
& \left\|W_{l}^{\text {tot }} \circ\left(\widehat{\Omega}_{l}^{\text {tot }}-\Omega_{1}^{\text {tot }}\right)\right\|_{1}+\left\|W_{s}^{\text {tot }} \circ\left(\hat{\Omega}_{s}^{\text {tot }}-\Omega_{S}^{\text {tot* }}\right)\right\|_{1} \leq 8\left(k_{i}+k_{s}\right) \lambda_{n}
\end{align*}
$$

Where a, c, κ_{1} and κ_{2} are constants

$$
\begin{align*}
& \| \widehat{\Omega}^{\text {tot }-\Omega^{\text {tot }} \|_{F}} \\
& \leq \frac{16 \kappa_{1} \operatorname{a\operatorname {max}}{ }_{j, k}\left(W_{l}^{\text {tot }}{ }_{j, k}, W_{S}^{\text {tot }}{ }_{j, k}\right)}{\kappa_{2}} \sqrt{\frac{\left(k_{i}+k_{s}\right) \log (K p)}{n_{\text {tot }}}} \tag{5.9}
\end{align*}
$$

Empirical Results on Multiple Synthetic Datasets

- JEEK outperforms the speed of the state-of arts significantly faster ($\sim 5000 \times$ improvement);
- JEEK obtains better AUC as the state-of-the-art;
- JEEK obtains better AUC than JEEK-NK (no additional knowledge).

Empirical Results on Two Real-world Datasets

(a)

(b)

- (a). On real-world gene expression data about leukemia cells vs. normal blood cells. Used multiple types of additional knowledge;
- (b). On real-world Brain fMRI dataset: ABIDE. Using LDA as a downstream classification for evaluating JEEK vs. baselines.

Method III: DIFFEE

Outline

Background

Motivation
Solution for Limitations - Elementary Estimator
Method I: FASJEM

- Background
- Method
- Results
(5) Method II: JEEK
- Background
- Method
- Results

6) Method III: DIFFEE

- Method
- Results
(7) Discussion
- Questions from Proposal
- Future works

Takes III: Learning sparse changes between two graphs

- Each graph may be dense or sparse, differential net is sparse

Proposed Method III: DIFFEE

- Two cases : d (disease) \& c (control)

$\operatorname{argmin}\|\theta\|_{1}$
 θ

Subject to:
$\left\|\theta-\mathcal{B}^{*}(\widehat{\phi})\right\|_{\infty} \leq \lambda_{n}$

$$
\underset{\Delta}{\operatorname{argmin}}\|\Delta\|_{1}
$$

Subject to:
$\left\|\Delta-\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \hat{\Sigma}_{c}\right)\right\|_{\infty} \leq \lambda_{n}$

Proposed Method III: DIFFEE

Elementary Estimator (EE)

$$
\underset{\theta}{\operatorname{argmin}} \mathcal{R}(\theta)
$$

$$
\text { Subject to: } \mathcal{R}^{*}\left(\theta-\mathcal{B}^{*}(\widehat{\phi})\right) \leq \lambda_{n}
$$

EE	$\mathcal{R}(\cdot)$	θ	$\widehat{\theta}_{n}$	$\mathcal{R}^{*}(\cdot)$				
EE-sGGM	$\\|\cdot\\|_{1}$	Ω	$\left[T_{v}(\widehat{\Sigma})\right]^{-1}$	$\\|\cdot\\|_{\infty}$				
DIFFEE	$\\|\cdot\\|_{1}$	Δ	$\left(\left[T_{v}\left(\hat{\Sigma}_{d}\right)\right]^{-1}-\left[T_{v}\left(\hat{\Sigma}_{c}\right)\right]^{-1}\right)$	$\\|\cdot\\|_{\infty}$				

DIFFEE

$\underset{\Delta}{\operatorname{argmin}}\|\Delta\|_{1}$

$$
\Delta
$$

(6.4)

Subject to: $\left\|\Delta-\left(\left[T_{v}\left(\hat{\Sigma}_{d}\right)\right]^{-1}-\left[T_{v}\left(\hat{\Sigma}_{c}\right)\right]^{-1}\right)\right\|_{\infty} \leq \lambda_{n}$

DIFFEE: Optimization Solution

- Close form

$$
\begin{gather*}
\widehat{\Delta}=S_{\lambda_{n}}\left(\left[T_{v}\left(\widehat{\Sigma}_{d}\right)\right]^{-1}-\left[T_{v}\left(\widehat{\Sigma}_{c}\right)\right]^{-1}\right) \tag{6.5}\\
{\left[S_{\lambda}(A)\right]_{i j}=\operatorname{sign}\left(A_{i j}\right) \max \left(\left|A_{i j}\right|-\lambda, 0\right)} \tag{6.6}
\end{gather*}
$$

- GPU-parallelizable

DIFFEE: Computational Complexity

The best baseline of	Task I	Task II	Task III
Computational complexity	$O\left(K p^{3}\right) /$ iter	$O\left(K^{4} p^{5}\right)$	$O\left(p^{3}\right) /$ iter
Bottle neck	SVD	Linear program- ming	SVD
Our ap- proach	FASJEM	JEEK	DIFFEE
Computational complexity	$O\left(K p^{2}\right) /$ iter	$O\left(K^{4} p^{2}\right)$	$O\left(p^{3}\right)$
Parallelization	$O(K) /$ iter	$O\left(K^{4}\right)$	$O\left(p^{3}\right)$

Summary

	EE	$\mathcal{R}(\cdot)$	θ	$\widehat{\theta}_{n}$	$\mathcal{R}^{*}(\cdot)$				
	EE-sGGM	$\\|\cdot\\|_{1}$	Ω	$\left[T_{v}(\bar{\Sigma})\right]^{-1}$	$\\|\cdot\\|_{\infty}$				
Task I	FASJEM	$\\|\cdot\\|_{1}+\mathcal{R}^{\prime}$	$\Omega^{\text {tot }}$	$\operatorname{inv}\left[T_{v}\left(\bar{\Sigma}^{\text {tot }}\right)\right]$	$\max \left(\\|\cdot\\|_{\infty}, \mathcal{R}^{\prime *}\right)$				
Task II	JEEK	$\mathrm{kw}-$ norm	$\Omega^{\text {tot }}$	$\operatorname{inv}\left[T_{\nu}\left(\hat{\Sigma}^{\text {tot }}\right)\right]$	$\mathrm{kw}-\mathrm{dual}$				
Task III	DIFFEE	$\\|\cdot\\|_{1}$	Δ	$\left[T_{v}\left(\widehat{\Sigma}_{c}\right)\right]^{-1}$	$\\|\cdot\\|_{\infty}$				
$-\left[T_{v}\left(\widehat{\Sigma}_{c}\right)\right]^{-1}$	$\\|\cdot\\|_{\infty}$								

Outline

Background

Motivation
Solution for Limitations - Elementary Estimator
Method I: FASJEM

- Background
- Method
- Results
(5) Method II: JEEK
- Background
- Method
- Results

6) Method III: DIFFEE

- Method
- Results
(7) Discussion
- Questions from Proposal
- Future works

Results: Theoretical Analysis

- Sharp convergence rate as the state-of-art

$$
\begin{align*}
&\left\|\widehat{\Delta}-\Delta^{*}\right\|_{\infty} \leq \frac{16 \kappa_{1} a}{\kappa_{2}} \sqrt{\frac{\log p}{\min \left(n_{c}, n_{d}\right)}} \\
&\left\|\widehat{\Delta}-\Delta^{*}\right\|_{F} \leq \frac{32 \kappa_{1} a}{\kappa_{2}} \sqrt{\frac{k \log p}{\min \left(n_{c}, n_{d}\right)}} \tag{6.7}\\
&\left\|\widehat{\Delta}-\Delta^{*}\right\|_{1} \leq \frac{64 \kappa_{1} a}{\kappa_{2}} k \sqrt{\frac{\log p}{\min \left(n_{c}, n_{d}\right)}}
\end{align*}
$$

Results: Synthetic Data Results

Results: Synthetic Data Results

Results: Real-world Data Results

- Apply to Brain image data (fMRI)
- Use the estimated different network in LDA
- Compare the accuracy with the state-of-art methods

Method	DIFFEE	FusedGLasso	Diff-CLIME
Accuracy (\%)	$\mathbf{5 7 . 5 8 \%}$	56.90%	53.79%

Discussion

Outline

Background

Motivation
Solution for Limitations - Elementary Estimator
Method I: FASJEM

- Background
- Method
- Results
(5) Method II: JEEK
- Background
- Method
- Results
(3) Method III: DIFFEE
- Method
- Results
(7) Discussion
- Questions from Proposal
- Future works

Support Analysis Results

- DIFFEE as an example

Lemma

$$
\begin{equation*}
\left\|\Delta^{*}-\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c}\right)\right\|_{\infty} \leq \lambda_{n} \tag{7.1}
\end{equation*}
$$

Support Analysis Results

- DIFFEE as an example

Lemma

$$
\begin{equation*}
\left\|\Delta^{*}-\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c}\right)\right\|_{\infty} \leq \lambda_{n} \tag{7.1}
\end{equation*}
$$

Corollary

$$
\begin{equation*}
\Delta_{i, j}^{*}=0 \Longrightarrow\left|\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c}\right)_{i, j}\right| \leq \lambda_{n} \tag{7.2}
\end{equation*}
$$

$$
\begin{equation*}
\widehat{\Delta}=S_{\lambda_{n}}\left(\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \hat{\Sigma}_{c}\right)\right) \tag{7.3}
\end{equation*}
$$

Support Analysis Results

- DIFFEE as an example

Lemma

$$
\begin{equation*}
\left\|\Delta^{*}-\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c}\right)\right\|_{\infty} \leq \lambda_{n} \tag{7.1}
\end{equation*}
$$

Corollary

$$
\begin{equation*}
\Delta_{i, j}^{*}=0 \Longrightarrow\left|\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \hat{\Sigma}_{c}\right)_{i, j}\right| \leq \lambda_{n} \tag{7.2}
\end{equation*}
$$

$$
\begin{equation*}
\widehat{\Delta}=S_{\lambda_{n}}\left(\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c}\right)\right) \tag{7.3}
\end{equation*}
$$

Result

$$
\begin{equation*}
\Delta_{i, j}^{*}=0 \Longrightarrow \widehat{\Delta}_{i, j}=0 \tag{7.4}
\end{equation*}
$$

- $\operatorname{supp}(\widehat{\Delta}) \subseteq \operatorname{supp}\left(\Delta^{*}\right)$

Support Analysis Result

- Additional Assumption:

Assumption

$$
\begin{equation*}
\min _{s \in \operatorname{supp}\left(\Delta^{*}\right)}\left|\Delta_{s}^{*}\right| \geq 3\left\|\Delta^{*}-\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c}\right)\right\|_{\infty} \tag{7.5}
\end{equation*}
$$

Support Analysis Result

- Additional Assumption:

Assumption

$$
\begin{equation*}
\min _{s \in \operatorname{supp}\left(\Delta^{*}\right)}\left|\Delta_{s}^{*}\right| \geq 3\left\|\Delta^{*}-\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c}\right)\right\|_{\infty} \tag{7.5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{supp}\left(\Delta^{*}\right) \subseteq \operatorname{supp}(\widehat{\Delta}) \tag{7.6}
\end{equation*}
$$

Support Analysis Result

- Additional Assumption:

Assumption

$$
\begin{equation*}
\min _{s \in \operatorname{supp}\left(\Delta^{*}\right)}\left|\Delta_{s}^{*}\right| \geq 3\left\|\Delta^{*}-\mathcal{B}^{*}\left(\widehat{\Sigma}_{d}, \widehat{\Sigma}_{c}\right)\right\|_{\infty} \tag{7.5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{supp}\left(\Delta^{*}\right) \subseteq \operatorname{supp}(\widehat{\Delta}) \tag{7.6}
\end{equation*}
$$

- Combine the above results

$$
\begin{equation*}
\operatorname{supp}\left(\Delta^{*}\right)=\operatorname{supp}(\widehat{\Delta}) \tag{7.7}
\end{equation*}
$$

Standardized Covariance Matrices

- Real world: Different tasks \rightarrow different value scale
- e.g., fMRI vs RNA squencing
- Problem: hard to choose λ_{n} in different scales

Standardized Covariance Matrices

- Real world: Different tasks \rightarrow different value scale
- e.g., fMRI vs RNA squencing
- Problem: hard to choose λ_{n} in different scales
- Solution: Govariance matrices \Longrightarrow Correlation matrices

Theorem

The inverse of Correlation matrices have the same support set as the inverse of covariance matrices

- Nonparanormal extensions - Relax the Gaussian Assumption
- Added in all the packages

Iteration number T

- linearly converge method: $T=O\left(n \log \left(\frac{1}{T O L}\right)\right)$
- TOL is the error bound

Iteration number T

- linearly converge method: $T=O\left(n \log \left(\frac{1}{T O L}\right)\right)$
- TOL is the error bound
- FASJEM error bound: $O\left(\frac{\log (K p)}{n_{\text {tot }}}\right)$

Iteration number T

- linearly converge method: $T=O\left(n \log \left(\frac{1}{T O L}\right)\right)$
- TOL is the error bound
- FASJEM error bound: $O\left(\frac{\log (K p)}{n_{\text {tot }}}\right)$
- $T=O\left(\frac{n_{\text {tot }} \log \left(n_{\text {tot }}\right)}{\log (\log (K p))}\right)$

Trade-off

- proxy backward mapping still $O\left(p^{3}\right)$
- In practice, fast in our three tasks
- Thanks to excellent low-level implementation
- Not well performed in low-dimensional case
- $p^{\prime}=\max (n, p)$

Trade-off

Outline

(1) Background

Motivation

Solution for Limitations - Elementary Estimator Method I: FASJEM

- Background
- Method
- Results
(5) Method II: JEEK
- Background
- Method
- Results
(6) Method III: DIFFEE
- Method
- Results
(7) Discussion
- Questions from Proposal
- Future works

KW-norm for FASJEM

- Revise the ℓ_{1} norm in FASJEM to a KW-norm

KW-norm for FASJEM

$$
\begin{align*}
\mathcal{R}\left(\left\{\Omega^{(i)}\right\}\right) & =\sum_{i=1}^{K}\left\|W^{(i)} \circ \Omega^{(i)}\right\|_{1} \tag{7.8}\\
& =\left\|W^{\text {tot }} \circ \Omega^{\text {tot }}\right\|_{1}
\end{align*}
$$

- $\left\{W^{(i)}\right\}$: weights describing knowledge of each graph.

Future work: FASJEM with additional knowledge -FASJEM-K

FASJEM-K

$$
\begin{align*}
& \underset{\Omega_{\text {tot }}}{\operatorname{argmin}}\left\|W_{\text {tot }} \circ \Omega_{\text {tot }}\right\|_{1}+\epsilon \mathcal{R}^{\prime}\left(\Omega_{\text {tot }}\right) \\
& \text { s.t. }\left\|W_{\text {tot }} \circ\left(\Omega_{\text {tot }}-\operatorname{inv}\left(T_{v}\left(\widehat{\Sigma}_{\text {tot }}\right)\right)\right)\right\|_{\infty} \leq \lambda_{n} \\
& \mathcal{R}^{\prime *}\left(\Omega_{\text {tot }}-\operatorname{inv}\left(T_{v}\left(\widehat{\Sigma}_{\text {tot }}\right)\right)\right) \leq \epsilon \lambda_{n} \tag{7.9}
\end{align*}
$$

KW-norm for Differential Network: kEV-norm

- Integrating both edge-level and node-level additional knowledge through a novel regularization function $\mathcal{R}(\cdot)$

kEV-norm

$$
\begin{equation*}
\mathcal{R}(\Delta)=\left\|W_{E} \circ \Delta_{E \backslash \mathcal{G}_{V}}\right\|_{1}+\epsilon\left\|\Delta_{\mathcal{G}_{V}}\right\|_{\mathcal{G}_{V}, 2} \tag{7.10}
\end{equation*}
$$

- \mathcal{G}_{V} is a node group.
- W_{E} represents the weights for edges.

Future work: DIFFEE-K

- Combine kEV-norm and Elementary Estimator

DIFFEE-K

$$
\underset{\Delta}{\operatorname{argmin}}\left\|W_{E} \circ \Delta_{E \backslash \mathcal{G}_{V}}\right\|_{1}+\epsilon\left\|\Delta_{\mathcal{G}_{V}}\right\|_{\mathcal{G}_{V}, 2}
$$

Subject to: $\left\|W_{E} \circ\left(\Delta-\left(\left[T_{v}\left(\widehat{\Sigma}_{d}\right)\right]^{-1}-\left[T_{v}\left(\widehat{\Sigma}_{c}\right)\right]^{-1}\right)\right)\right\|_{\infty} \leq \lambda_{n} \quad$ (7.11)

$$
\epsilon\left\|\Delta-\left(\left[T_{v}\left(\widehat{\Sigma}_{d}\right)\right]^{-1}-\left[T_{v}\left(\widehat{\Sigma}_{c}\right)\right]^{-1}\right)\right\|_{\mathcal{G}_{v}, 2}^{*} \leq \lambda_{n}
$$

Publications

- FASJEM
- A Fast and Scalable Joint Estimator for Learning Multiple Related Sparse Gaussian Graphical Models, B Wang, J Gao, Y Qi, AISTATS 2017
- DIFFEE
- Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian Graphical Model Structure, B Wang, A Sekhon, Y Qi, AISTATS 2018
- W-SIMULE
- A constrainedl 1 minimization approach for estimating multiple sparse Gaussian or nonparanormal graphical models, B Wang, R Singh, Y Qi, Machine Learning 106 (9-10), 1381-1417
- A Constrained, Weighted-L1 Minimization Approach for Joint Discovery of Heterogeneous Neural Connectivity Graphs, C Singh, B Wang, Y Qi, Advances in Modeling and Learning Interactions from Complex Data, NIPS 2017 Workshop

Publications

- JEEK
- A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models, B Wang, A Sekhon, Y Qi, ICML 2018
- DIFFEE-K
- A Fast and Scalable Estimator for Using Additional Knowledge in Learning Sparse Structure Change of High-Dimensional Gaussian Graphical Models, B Wang, A Sekhon, Y Qi, submit to NIPS 2018

R Package is Available !!!

- The project website: http://jointggm.org/
- R package "simule":
- install.packages("simule")
- demo(simule)!
- R package "fasjem":
- install.packages("fasjem")
- demo(fasjem)!
- R package "diffee":
- install.packages("diffee")
- demo(diffee)!
- R package "jeek":
- install.packages("jeek")
- demo(jeek)!
- A complete package "jointNet" will be ready by this summer.

Acknowledgement

- Advisor: Yanjun Qi
- Co-authors: Rita, Arshdeep, Ji, Chandan
- Lab mates: Zhaoyang, Jack, Weilin
- My Family
- Thanks!

Back-up: Difficulty in combining FASJEM and JEEK

$$
\underset{\Omega_{I}^{\text {tot }}, \Omega_{S}^{\text {tot }}}{\operatorname{argmin}}\left\|W_{I}^{\text {tot }} \circ \Omega_{I}^{\text {tot }}\right\|_{1}+\left\|W_{S}^{\text {tot }} \circ \Omega_{S}^{\text {tot }}\right\|+\epsilon \mathcal{R}^{\prime}\left(\Omega^{\text {tot }}\right)
$$

Subject to: $\left\|W_{l}^{\text {tot }} \circ\left(\Omega^{\text {tot }}-\operatorname{inv}\left(T_{v}\left(\widehat{\Sigma}^{\text {tot }}\right)\right)\right)\right\|_{\infty} \leq \lambda_{n}$

$$
\begin{align*}
& \left\|W_{S}^{\text {tot }} \circ\left(\Omega^{\text {tot }}-\operatorname{inv}\left(T_{v}\left(\hat{\Sigma}^{\text {tot }}\right)\right)\right)\right\|_{\infty} \leq \lambda_{n} \tag{7.12}\\
& \mathcal{R}^{* \prime}\left(\Omega^{\text {tot }}\right) \leq \epsilon \lambda_{n}
\end{align*}
$$

- Hard to optimize
- Lose fast and scalable property

Back-up: How to choose v in $T_{v}(\widehat{\Sigma})$

- line search
- v from the set $\{0.001 i \mid i=1,2, \ldots, 1000\}$
- pick a value that makes $T_{v}(\widehat{\Sigma})$ and be invertible

Back-up: Connecting to Bayesian Statistics

$$
\begin{align*}
& -\log \left(\mathbb{P}\left(\Omega^{(i)} \mid X^{(i)}, \mu^{(i)}, W_{l}^{(i)}{ }_{j, k}, W_{s j, k}\right)\right) \\
& \propto-\log \left(\operatorname{det}\left(\Omega^{(i)^{-1}}\right)\right)+<\Omega^{(i)}, \widehat{\Sigma}^{(i)}> \tag{7.13}\\
& +\sum_{j, k}\left(W_{l}^{(i)}{ }_{j, k}\left|\Omega_{l}^{(i)}{ }_{j, k}\right|+W_{S}\left|\Omega_{j j, k}\right|\right)
\end{align*}
$$

Back-up: Proximal algorithm Basics

- proximity definition:
- $\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)$
- $\underset{x}{\operatorname{argmin}} f(x)=g(x)+h(x)$
- proximal gradient descent:
- $x^{(k)}=\operatorname{prox}_{t_{k} h}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right)$

Back-up: Proximal algorithm for FASJEM

