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Deep Learning is Solving Many of Our Problems! 

Auto-Driving	Car	

Voice	Assistant 

Spam	Detector 

Medical	Genomics 
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Classifiers Under Attack:  
Adversary Adapts 

ACM	CCS	2016	

Actual	images	

Recognized	faces	
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Mahmood	Sharif	et	al.	“Accessorize	to	a	Crime:	Real	and	Stealthy	Attacks	on	State-of-the-Art	Face	Recognition”,	In	CCS,	2016.	



Healthcare	

However, Deep Learning Classifiers are Easily Fooled 
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Original	Image	 Adversarial	Example	Perturbation	

Benign	 Malignant	

Melanoma	Diagnosis	with	Computer	Vision		

Samuel	G	Finlayson	et	al.	“Adversarial	attacks	on	medical	machine	learning”,	Science,	2019.	



Solution Strategy 
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Solution	Strategy	1:		Train	a	perfect	vision	model.	
Infeasible	yet.	

Solution	Strategy	2:		Make	it	harder	to	find	adversarial	examples.	
Arms	race!	

Feature	Squeezing:	A	general	framework	that	reduces	the	search	
space	available	for	an	adversary	and	detects	adversarial	examples.	

Simple,	Cheap,	Effective!		



Roadmap 

•  Feature	Squeezing	Detection	Framework	

•  Feature	Squeezers	
•  Bit	Depth	Reduction	
•  Spatial	Smoothing	

• Detection	Evaluation	
•  Oblivious	adversary	
•  Adaptive	adversary	
•  Provable	Robustness	
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Model f(.) 

Model f(.) 

Background: Machine Learning 

• Machine	Learning:		learn	to	find	
models	that	can	generalize	from	
observed	data	to	unseen	data	
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Input 

X	
	

Y	

X’	
	

	Model	f(.)	
generalizes	to	
Unseen	X’	

Output 

Trained Deep 
learning Model 

“panda” 

For	instance:		



Background: Adversarial Examples  

8	

+	

=	

t: “gibbon” 

Trained Deep 
learning Model 

y: “panda” 

x X 0.007 × [𝑛𝑜𝑖𝑠𝑒]	

x:	original	
sample	

x’	=	x	+	r	:	
adversarial	
sample	

Trained Deep 
learning Model 

x’= x + r  

C	Szegedy	et	al.,	Intriguing	Properties	of	Deep	Neural	Networks.	In	ICLR	2014.	



Background: Adversarial Examples  
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+	

=	

t: “gibbon” 

Trained Deep 
learning Model 

y: “panda” 

x X 0.007 × [𝑛𝑜𝑖𝑠𝑒]	

Trained Deep 
learning Model 

x’= x + r  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝑓(​𝑥↑′ )−𝑡‖+ 𝜆∗Δ(𝑥, ​𝑥↑′ )	
Misclassification	term	 Distance	term	

Many	different	variations	
of	formulations	to	search	
for	x’	from	x,		e.g.,		



Background: Different variations of Adversarial Examples   
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+	

“1”	
100%	confidence	

“4”	
100%	=	

+	 “2”	
99.9%	=	

+	 “2”	
83.8%	=	

BIM	

JSMA	

CW2	

Original	
Example	 Perturbations	 Adversarial		

Examples	

C	Szegedy	et	al.,	Intriguing	Properties	of	Deep	Neural	Networks.	In	ICLR	2014.	



Intriguing Property of Adversarial Examples  
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“panda” Trained Deep 
learning Model 

y: “1” 

Original X 

+	

y: “2” 

Trained Deep 
learning Model 

Adversarial 
Example: X + r  

Irrelevant	features	used	
in	classification	tasks	
are	the	major	cause	of	
adversarial	examples.	



Intriguing Property of Adversarial Examples  
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“panda” Trained Deep 
learning Model 

y: “1” 

Original X 

+	

y: “2” 

Trained Deep 
learning Model 

Adversarial 
Example: X + r  

Trained Deep 
learning Model 

y: “1” 

Squeeze(X) 

+	

y: “1” 

Trained Deep 
learning Model 

Squeeze(X + r ) 



Motivation 

•  Irrelevant	features	used	in	classification	tasks	
are	the	root	cause	of	adversarial	examples.	

•  The	feature	spaces	are	unnecessarily	too	large	
in	deep	learning	tasks:	e.g.	raw	image	pixels.	

•  We	may	reduce	the	search	space	of	possible	
perturbations	available	to	an	adversary	using	
Feature	Squeezing.	

Bit	Depth	Reduction	
13	
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Weilin Xu, David Evans, Yanjun Qi. 
Feature Squeezing: Detecting Adversarial Examples in Deep 
Neural Networks. 
2018 Network and Distributed System Security Symposium.  
NDSS2018	
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Weilin Xu, David Evans, Yanjun Qi. 
Feature Squeezing: Detecting Adversarial Examples in Deep 
Neural Networks. 
2018 Network and Distributed System Security Symposium.  
NDSS2018	



Detection Framework 
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Model 
Prediction0 

Input 

Model 

Squeezer
1 

Prediction1 

Legitimate 

​𝐿↓1 	 ​𝑑↓1 >T 

Yes 

Adversarial 

No 

Feature	Squeezer	coalesces	similar	samples	into	a	single	one.	
•  Barely	change	legitimate	output.	
•  Destruct	adversarial	perturbations.	

d1	



Detection Framework: Multiple Squeezers 
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Model 
Prediction0 

Input 

Model 

Squeezer
1 

Prediction1 
​𝐿↓1 	

​max�(​𝑑↓1 , ​
𝑑↓2 )>𝑇  

Yes 

Adversarial 

No 

Legitimate 

Model 

Squeezer
2 

Prediction2 

​𝐿↓1 	

•  Bit	Depth	Reduction	
•  Spatial	Smoothing	

d1	

d2	



Roadmap 

•  Feature	Squeezing	Detection	Framework	

•  Feature	Squeezers	
•  Bit	Depth	Reduction	
•  Spatial	Smoothing	

• Detection	Evaluation	
•  Oblivious	adversary	
•  Adaptive	adversary	
•  Provable	Robustness	
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Bit Depth Reduction 

0	
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3-bit	

1-bit	

8-bit	

Reduce	to	1-bit	
​𝑥↓𝑖 =round(​𝑥↓𝑖 ×2)/2	

Reduce	to	1-bit	
​𝑥↓𝑖 =round(​𝑥↓𝑖 ×2)/2	

[0.312					0.471		……		0.157			0.851]	
X_adv	

[0.012				0.571		……		0.159				0.951]	

X	

Original	value	

Ta
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et
	v
al
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[0.											1.									……				0.								1.							]	

[0.											0.									……				0.								1.							]	

Signal	Quantization	



Bit Depth Reduction 

Eliminating	adversarial	perturbations	while	preserving	semantics.	
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Legitimate				FGSM							BIM			  				CW∞      					CW2	

1	 1	 4	 2	 2	

1	 1	 1	 1	 1	



Bit Depth Reduction 

8						7						6						5						4						3						2						1	
Bits per Channel 
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Accuracy with Bit Depth Reduction 
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Dataset	 Squeezer	 Adversarial	Examples	
(FGSM,	BIM,	CW∞,	Deep	Fool,	CW2,	CW0,	JSMA)	

Legitimate	
Images	

MNIST	
None	 13.0%	 99.43%	

1-bit	Depth	 62.7%	 99.33%	

ImageNet	
None	 2.78%	 69.70%	

4-bit	Depth	 52.11%	 68.00%	

Baseline	



Distribution of Distance (Prediction, Squeezed Prediction ) (MNIST) 

Maximum	L1	Distance	 23	
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Spatial Smoothing: Median Filter 

• Replace	a	pixel	with	median	of	its	neighbors.	
•  Effective	in	eliminating	”salt-and-pepper”	noise.	
	

24	*	Image	from	https://sultanofswing90.wordpress.com/tag/image-processing/	

3x3	Median	Filter	



Spatial Smoothing: Non-local Means 

• Replace	a	patch	with	weighted	mean	of	similar	patches.	
• Preserve	more	edges.	
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𝑝		

​𝑞↓2 	

​𝑞↓1 	
​𝑝↑′ =∑↑▒𝑤(𝑝, ​𝑞↓𝑖 )× ​𝑞↓𝑖  	
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Airplane	
94.4%	

Truck	
99.9%	

Automobile	
56.5%	

Airplane	
98.4%	

Airplane	
99.9%	

Ship	
46.0%	

Airplane	
98.3%	

Airplane	
80.8%	

Airplane	
70.0%	

Median	Filter	
(2*2)	

Non-local	
Means	
(13-3-4)	

Original				BIM	(L∞)				JSMA	(L0)	



Accuracy with Spatial Smoothing 
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Dataset	 Squeezer	 Adversarial	Examples	
(FGSM,	BIM,	CW∞,	Deep	Fool,	CW2,	CW0)	

Legitimate	
Images	

ImageNet	

None	 2.78%	 69.70%	

Median	Filter	
2*2	 68.11%	 65.40%	

Non-local	Means	
11-3-4	 57.11%	 65.40%	

Baseline	



Distribution of Distance (Prediction, Squeezed Prediction ) (ImageNet) 

Maximum	L1	Distance	 28	
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Other Potential Squeezers 
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C	Xie,	et	al.	Mitigating	Adversarial	Effects	Through	Randomization,	ICLR	2018.	

J	Buckman,	et	al.	Thermometer	Encoding:	One	Hot	Way	To	Resist	Adversarial	Examples	,		
ICLR	2018.	

D	Meng	and	H	Chen,	MagNet:	a	Two-Pronged	Defense	against	Adversarial	Examples,	in	CCS	2017.	

F	Liao,	et	al.	Defense	against	Adversarial	Attacks	Using	High-Level	Representation	Guided	Denoiser,		
arXiv	1712.02976.	

A	Prakash,	et	al.	Deflecting	Adversarial	Attacks	with	Pixel	Deflection,	arXiv	1801.08926.	

•  Thermometer	Encoding	(learnable	bit	depth	reduction)	

•  Image	denoising	using	bilateral	filter,	autoencoder,	wavelet,	etc.	

•  Image	resizing	



Roadmap 

•  Feature	Squeezing	Detection	Framework	

•  Feature	Squeezers	
•  Bit	Depth	Reduction	
•  Spatial	Smoothing	

• Detection	Evaluation	
•  Oblivious	adversary	
•  Adaptive	adversary	
•  Provable	Robustness	
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Empirical Evaluation: Threat Models 

	
• Oblivious	adversary:	The	adversary	has	full	knowledge	of	the	
target	model,	but	is	not	aware	of	the	detector.	

• Adaptive	adversary:	The	adversary	has	full	knowledge	of	the	
target	model	and	the	detector.	
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Experimental Setup 

• Datasets	and	Models	
MNIST,	 							7-layer-CNN	
CIFAR-10,	 							DenseNet	
ImageNet,								MobileNet	

• Attacks	(100	examples	for	each	attack)	
•  Untargeted:	FGSM,	BIM,	DeepFool	
•  Targeted	(Next/Least-Likely):	JSMA,	Carlini-Wagner	L2/L∞/L0	

• Detection	Datasets	
•  A	balanced	dataset	with	legitimate	examples.	
•  50%	for	training	the	detector,	the	remaining	for	validation.	
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Detection Framework: Multiple Squeezers 
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Model 
Prediction0 

Input 

Model 

Squeezer
1 

Prediction1 
​𝐿↓1 	

​max�(​𝑑↓1 , ​
𝑑↓2 )>𝑇  

Yes 

Adversarial 

No 

Legitimate 

Model 

Squeezer
2 

Prediction2 

​𝐿↓1 	

•  Bit	Depth	Reduction	
•  Spatial	Smoothing	

d1	

d2	



How to find T for detector (MNIST) 

Maximum	L1	Distance	 34	

Select	a	threshold	value	with	FPR	5%.		
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Detect Successful Adv. Examples (MNIST) 
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Squeezer	
L∞ Attacks	 L2	Attacks	 L0	Attacks	

FGSM	 BIM	 CW∞	 CW2	 CW0	 JSMA	

1-bit	Depth	 100%	 97.9%	 100%	 100%	 55.6%	 100%	

Median	2*2	 73.1%	 27.7%	 100%	 94.4%	 82.2%	 100%	

[Best	Single]	 100%	 97.9%	 100%	 100%	 82.2%	 100%	

Joint	 100%	 97.9%	 100%	 100%	 91.1%	 100%	

Bit	Depth	Reduction	is	more	effective	on	L∞ and	L2	attacks.	

Median	Smoothing	is	more	effective	on	L0	attacks.	

Joint	detection	improves	performance.	



Aggregated Detection Results 

Dataset	 Squeezers	 Threshold	
False		

Positive		
Rate	

Detection	
Rate	
(SAEs)	

ROC-AUC	
Exclude	
FAEs	

MNIST	 Bit	Depth	(1-bit),		
Median	(2x2)	 0.0029	 3.98%	 98.2%	 99.44%	

CIFAR-10	
Bit	Depth	(5-bit),		
Median	(2x2),		
Non-local	Mean	(13-3-2)	

1.1402	 4.93%	 84.5%	 95.74%	

ImageNet	
Bit	Depth	(5-bit),		
Median	(2x2),		
Non-local	Mean	(11-3-4)	

1.2128	 8.33%	 85.9%	 94.24%	
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Empirical Evaluation: Threat Models 

	
• Oblivious	attack:	The	adversary	has	full	knowledge	of	the	
target	model,	but	is	not	aware	of	the	detector.	

• Adaptive	attack:	The	adversary	has	full	knowledge	of	the	
target	model	and	the	detector.	
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Adaptive Adversary 

Adaptive	CW2	attack,	unbounded	adversary.	

	

	Warren	He,	James	Wei,	Xinyun	Chen,	Nicholas	Carlini,	Dawn	Song,	
	Adversarial	Example	Defense:	Ensembles	of	Weak	Defenses	are	not	Strong,	USENIX	WOOT’17.	

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ‖𝑓(​𝑥↑′ )−𝑡‖+ 𝜆∗Δ(𝑥, ​𝑥↑′ )	 + 𝑘∗𝑑𝑒𝑡𝑒𝑐𝑡𝑆𝑐𝑜𝑟𝑒(𝑥′)	
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Misclassification	term	 Distance	term	 Detection	term	



Adaptive Adversary Success Rates 
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Roadmap 

•  Feature	Squeezing	Detection	Framework	

•  Feature	Squeezers	
•  Bit	Depth	Reduction	
•  Spatial	Smoothing	

• Detection	Evaluation	
•  Oblivious	adversary	
•  Adaptive	adversary	
•  Provable	Robustness	
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Simple	feature	squeezing	improves	
robustness	empirically.	
	
					Can	we	prove	it?	
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Recent Work: 
  
Feature Squeezing Improves Provable Robustness 
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Given	model	𝑓()	which	correctly	classifies	𝒙∈𝒳	as	𝑦,

    ​∀𝒙↑′ ∈𝒳, ∆(𝒙, ​𝒙↑′ )≤𝜖   ⇒𝑓(​𝒙↑′ )=𝑦		


𝑓	is	𝜖-robust	on	input	𝒙∈𝒳	wrt	a	distance	metric	∆.	



Conclusion 

	
•  Feature	Squeezing	hardens	deep	learning	models.	

•  Feature	Squeezing	gives	advantages	to	the	defense	side	in	
the	arms	race	with	adaptive	adversary.	

•  Feature	Squeezing	improves	provable	robustness	of	deep	
learning	models		
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Thank you! 
Reproduce	our	results	using	EvadeML-Zoo:	https://evadeML.org/zoo	
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