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Deep Learning is Solving Many of Our Problems!

Auto-Driving Car

Voice Assistant

_.Spam Detector
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Actual images

Recognized faces

Mahmood Sharif et al. “Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition”, In CCS, 2016.



However, Deep Learning Classifiers are Easily Fooled

Melanoma Diagnosis with Computer Vision

Original Image Perturbation Adversarial Example

Healthcare
Benign Malignant

Samuel G Finlayson et al. “Adversarial attacks on medical machine learning”, Science, 2019.



Solution Strategy

Solution Strategy 1: Train a perfect vision model.

Infeasible yet.

Solution Strategy 2: Make it harder to find adversarial examples.
Arms race!

Feature Squeezing: A general framework that reduces the search
space available for an adversary and detects adversarial examples.




Roadmap

* Feature Squeezing Detection Framework

* Feature Squeezers
* Bit Depth Reduction
e Spatial Smoothing

e Detection Evaluation
* Oblivious adversary
* Adaptive adversary
* Provable Robustness



Background: Machine Learning For instance:
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Adversarial Examples
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C Szegedy et al., Intriguing Properties of Deep Neural Networks. In ICLR 2014.
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Trained Deep
learning Model

X

Many different variations
of formulations to search
for x’ from x, e.g.,

Emz’m’mz’ze If(xT )=+ AxA(xxT )

Misclassification term Distance term

Trained Deep

learning Model




Background: Different variations of Adversarial Examples

+ = £ .
- f 100%
BIM
llZ"
111” CW2
100% confidence j ugn
+ - 83.8%
Original BMA - Adversarial
Perturbations
Example Examples

C Szegedy et al., Intriguing Properties of Deep Neural Networks. In ICLR 2014. 0



Intriguing Property of Adversarial Examples

Adversarial :
Example: X +r |

Irrelevant features used
in classification tasks
are the major cause of

Trained Decp I adversarial examples. | Trained Deep
learning Model learning Model




Intriguing Property of Adversarial Examples
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Motivation

* |rrelevant features used in classification tasks
are the root cause of adversarial examples.

* The feature spaces are unnecessarily too large
in deep learning tasks: e.g. raw image pixels.

 We may reduce the search space of possible
perturbations available to an adversary using
Feature Squeezing.
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Weilin Xu, David Evans, Yanjun Qi.
Feature Squeezing: Detecting Adversarial Examples in Deep

Neural Networks.

2018 Network and Distributed System Security Symposium.
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Image Space

Image Space

Weilin Xu, David Evans, Yanjun Qi.

Feature Squeezing: Detecting Adversarial Examples in Deep
Neural Networks.

2018 Network and Distributed System Security Symposium.
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Detection Framework

Prediction,
Model

Prediction1

Adversarial

Yes

\

Feature Squeezer coalesces similar samples into a single one. Legitimate

* Barely change legitimate output.
e Destruct adversarial perturbations.
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Detection Framework: Multiple Squeezers

Prediction?
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Prediction
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«- -/ -+ Bit Depth Reduction
e Spatial Smoothing
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Roadmap

* Feature Squeezing Detection Framework

* Feature Squeezers
* Bit Depth Reduction
e Spatial Smoothing

e Detection Evaluation
* Oblivious adversary
e Adaptive adversary
* Provable Robustness
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Target value

Bit Depth Reduction
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Bit Depth Reduction

Eliminating adversarial perturbations while preserving semantics.

Legitimate FGSM

Binary
Filter
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Bit Depth Reduction

Bits per Channel
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Accuracy with Bit Depth Reduction

PerEeEn | Senecar Adversarial Examples Legitimate
. (FGSM, BIM, CW.,, Deep Fool, CW,, CW,, JSMA) | Images

None 13.0% 99.43%
MNIST
1-bit Depth 62.7% 99.33%
\_ J
None 2.78% 69.70%
ImageNet

4-bit Depth 52.11% 68.00%

Baseline
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Distribution of Distance (Prediction, Squeezed Prediction ) (MNIST)
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Spatial Smoothing: Median Filter

* Replace a pixel with median of its neighbors.
* Effective in eliminating ”salt-and-pepper” noise.

3x3 Median Filter

* Image from https://sultanofswing90.wordpress.com/tag/image-processing/

24



Spatial Smoothing: Non-local Means

* Replace a patch with weighted mean of similar patches.
* Preserve more edges.

pl =XTaEw(p,qli)xqli
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Original BIM (L..) JSMA (L,)
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Accuracy with Spatial Smoothing

Dataset Squeezer Adversarial Examples Legitimate
g (FGSM, BIM, CW.,, Deep Fool, CW,, CW,) Images

None 2.78% 60.70% |l Baseline
ImageNet MedlgrzFllter 68.11% 65.40%
Non-li)lca; I:l/Ieans 57 11% 65.40%
2. K y
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Distribution of Distance (Prediction, Squeezed Prediction ) (ImageNet)
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Other Potential Squeezers

* Thermometer Encoding (learnable bit depth reduction)

J Buckman, et al. Thermometer Encoding: One Hot Way To Resist Adversarial Examples ,
ICLR 2018.

* Image denoising using bilateral filter, autoencoder, wavelet, etc.
D Meng and H Chen, MagNet: a Two-Pronged Defense against Adversarial Examples, in CCS 2017.

F Liao, et al. Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser,
arXiv 1712.02976.

A Prakash, et al. Deflecting Adversarial Attacks with Pixel Deflection, arXiv 1801.08926.

* Image resizing
C Xie, et al. Mitigating Adversarial Effects Through Randomization, ICLR 2018.



Roadmap

* Feature Squeezing Detection Framework

* Feature Squeezers
* Bit Depth Reduction
e Spatial Smoothing

e Detection Evaluation
e Oblivious adversary
e Adaptive adversary
* Provable Robustness
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Empirical Evaluation: Threat Models

* Oblivious adversary: The adversary has full knowledge of the
target model, but is not aware of the detector.



Experimental Setup

e Datasets and Models
MNIST, 7-layer-CNN
CIFAR-10, DenseNet
ImageNet, MobileNet

e Attacks (100 examples for each attack)
* Untargeted: FGSM, BIM, DeepFool
 Targeted (Next/Least-Likely): ISMA, Carlini-Wagner L,/L../L,

* Detection Datasets
* A balanced dataset with legitimate examples.
* 50% for training the detector, the remaining for validation.



Detection Framework: Multiple Squeezers

Prediction?
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How to find T for detector (MNIST)

. Select a threshold value with FPR 5%.
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Detect Successful Adv. Examples (MNIST)

Bit Depth Reduction is more effective on L., and L, attacks.

Median Smoothing is more effective on L, attacks.

Ly Attacks

Squeezer
CW,
1-bit Depth 100% 97.9% 100% 100% 55.6% 100%
Median 2*2 73.1% 27.7% 100% 94.4% [ 82.2% 100% ]
[Best Single] 100% 97.9% 100% 100% 82.2% 100%

Joint 100% 97.9% 100% 100% l 91.1% l 100%

Joint detection improves performance. .



Aggregated Detection Results

Dataset

Detection | ROC-AUC

Squeezers Threshold | Positive Rate Exclude

(SAEs) FAEs

MNIST

CIFAR-10

ImageNet

Bit Depth (1-bit),
Median (2x2)

Bit Depth (5-bit),
Median (2x2), 1.1402
Non-local Mean (13-3-2)

Bit Depth (5-bit),
Median (2x2), 1.2128
Non-local Mean (11-3-4)

0.0029

3.98% 98.2% 99.44%

4.93% 84.5% 95.74%

8.33% 85.9% 94.24%
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Empirical Evaluation: Threat Models

* Adaptive attack: The adversary has full knowledge of the
target model and the detector.



Adaptive Adversary

Adaptive CW, attack, unbounded adversary.
minimize [|[f(xT )—t|[+ AxA(xxT ) + kxdetectScore(x)

Misclassification term Distance term Detection term

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, Dawn Song,
Adversarial Example Defense: Ensembles of Weak Defenses are not Strong, USENIX WOOT’17.



Adaptive Adversary Success Rates
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Simple feature squeezing improves
robustness empirically.

Can we prove it?
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Recent Work:

Feature Squeezing Improves Provable Robustness

Given model 5 which correctly classifies x«x as 5,

val eX, A(xaxl )<e =/l )=y

718 «~robust on input «=x wrt a distance metric a.



Conclusion

* Feature Squeezing hardens deep learning models.

* Feature Squeezing gives advantages to the defense side in
the arms race with adaptive adversary.

* Feature Squeezing improves provable robustness of deep
learning models
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Thank you!

Reproduce our results using EvadeML-Zoo: https://evadeML.org/zoo
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