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Deep Learning is Solving Many of Our Problems!
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However, Deep Learning Classifiers are Easily Fooled
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C Szegedy et al., Intriguing Properties of Deep Neural Networks. In ICLR 2014.
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Solution Strategy

Solution Strategy 1: Train a perfect vision model.

Infeasible yet.

Solution Strategy 2: Make it harder to find adversarial examples.
Arms race!

Feature Squeezing: A general framework that reduces the search
space available for an adversary and detects adversarial examples.




Roadmap

* Feature Squeezing Detection Framework

* Feature Squeezers
* Bit Depth Reduction
e Spatial Smoothing

e Detection Evaluation
* Obliviousadversary
* Adaptive adversary



For instance:
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Background: Adversarial Examples
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C Szegedy et al., Intriguing Properties of Deep Neural Networks. In ICLR 2014.



Background: Adversarial Examples
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Intriguing Property of Adversarial Examples
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Intriguing Property of Adversarial Examples
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Motivation

* |rrelevant features used in classification tasks
are the root cause of adversarial examples.

 The feature spaces are unnecessarily too large
in deep learning tasks: e.g. raw image pixels.

 We may reduce the search space of possible
perturbations available to an adversary using

Feature Squeezing.
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Image Space

Weilin Xu, David Evans, Yanjun Qi. Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks. 2018 Network and
Distributed System Security Symposium. NDSS2018
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Image Space

Weilin Xu, David Evans, Yanjun Qi. Feature Squeezing: Detecting
Adversarial Examples in Deep Neural Networks. 2018 Network and
Distributed System Security Symposium. NDSS2018
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Detection Framework

Prediction,
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Feature Squeezer coalesces similar samples into a single one. Legitimate

* Barely change legitimate input.
* Destruct adversarial perturbations.
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Detection Framework: Multiple Squeezers
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Bit Depth Reduction
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Bit Depth Reduction

Eliminating adversarial perturbations while preserving semantics.
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Accuracy with Bit Depth Reduction

PerEas | SeriEmer Adversarial Examples Legitimate
: (FGSM, BIM, CW.,, Deep Fool, CW,, CW,, JSMA) | Images

None 13.0% 99.43%
MNIST
1-bit Depth 62.7% 99.33%
§ J
None 2.78% 69.70%
ImageNet

4-bit Depth 52.11% 68.00%

Baseline
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Distribution of Distance (Prediction, Squeezed Prediction ) (MNIST)
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Spatial Smoothing: Median Filter

* Replace a pixel with median of its neighbors.
* Effective in eliminating “salt-and-pepper” noise.

3x3 Median Filter

* Image from https://sultanofswing90.wordpress.com/tag/image-processing/
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Spatial Smoothing: Non-local Means

* Replace a patch with weighted mean of similar patches.
* Preserve more edges.
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Median Filter
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Non-local

Means
(13-3-4)

—

Original BIM (L..) JSMA (L)

= 1 =

Airplane
94.4%

Airplane Ship Airplane

98.4% 46.0% 99.9%
/

(i

- I B

B =

R

Airplane Airplane Airplane
98.3% 80.8% 70.0%

23



Accuracy with Spatial Smoothing

Dataset Squeezer Adversarial Examples Legitimate
! (FGSM, BIM, CW.,, Deep Fool, CW,, CW,) | Images

None 2.78% 69.70%
ImageNet Med|;:2F|Iter 68.11% 65.40%
Non-local Means 57 11% 65.40%

€@ Baseline

11-3-4 \ y
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Distribution of Distance (Prediction, Squeezed Prediction ) (ImageNet)
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Other Potential Squeezers

* Thermometer Encoding(learnable bit depth reduction)

J Buckman, et al. Thermometer Encoding: One Hot Way To Resist Adversarial Examples,
ICLR 2018.

* Image denoising using bilateral filter, autoencoder, wavelet, etc.
D Meng and H Chen, MagNet: a Two-Pronged Defense against Adversarial Examples,in CCS 2017.

F Liao, et al. Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser,
arXiv 1712.02976.

A Prakash, et al. Deflecting Adversarial Attacks with Pixel Deflection, arXiv 1801.08926.
* Image resizing
C Xie, et al. Mitigating Adversarial Effects Through Randomization, ICLR 2018.



Experimental Setup

e Datasets and Models
MNIST, 7-layer-CNN
CIFAR-10, DenseNet
ImageNet, MobileNet

 Attacks (100 examples for each attack)
* Untargeted: FGSM, BIM, DeepFool
» Targeted (Next/Least-Likely): JSMA, Carlini-Wagner L,/L../L,

* Detection Datasets
* A balanced dataset with legitimate examples.
* 50% for training the detector, the remaining for validation.



Threat Models

* Oblivious adversary: The adversary has full knowledge of the
target model, but is not aware of the detector.



Detection Framework: Multiple Squeezers
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How to find T for detector (MNIST)

2.0

Select a threshold value with FPR 5%.
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Detect Successful Adv. Examples (MNIST)

Bit Depth Reductionis more effective on L., and L, attacks.

Median Smoothingis more effective on L, attacks.

Squeezer
CW,
1-bit Depth 100% 97.9% 100% 100% 55.6% 100%
Median 2*2 73.1% 27.7% 100% 94.4% [ 82.2% 100% ]
[Best Single] 100% 97.9% 100% 100% 82.2% 100%

Joint 100% 97.9% 100% 100% l 91.1% l 100%

Joint detectionimproves performance.
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Aggregated Detection Results

Detection | ROC-AUC

Squeezers Threshold | Positive Rate Exclude
(SAES) FAEs

MNIST

CIFAR-10

ImageNet

Bit Depth (1-bit),
Median (2x2)

Bit Depth (5-bit),
Median (2x2), 1.1402
Non-local Mean (13-3-2)

Bit Depth (5-bit),
Median (2x2), 1.2128
Non-local Mean (11-3-4)

0.0029

3.98% 98.2% 99.44%

4.93% 84.5% 95.74%

8.33% 85.9% 94.24%
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Threat Models

* Adaptive attack: The adversary has full knowledge of the
target model and the detector.



Adaptive Adversary

Adaptive CW, attack, unbounded adversary.
minimize ||f(x") —t|| + A *A(x,x") + k = detectScore(x")

Misclassification term Distance term Detection term

Warren He, James Wei, Xinyun Chen, Nicholas Carlini, Dawn Song,
Adversarial Example Defense: Ensembles of Weak Defenses are not Strong, USENIX WOOT’17.



Adaptive Adversarial Examples
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No successful adversarial examples were found for images originally labeled as 3 or 8.



Adaptive Adversary Success Rates

Adversary’s Success Rate
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Counter Measure: Randomization

* Binary filter threshold := 0.5 threshold := V' (0.5,0.0625)
1 — 1 I
0.8 0.8
0.6 0.6
0.4 "» 0.4
0.2 0.2
0 0
0 0.5 1 0 0.5 1

e Strengthen the adaptive adversary
Attack an ensemble of 3 detectors with thresholds := [0.4, 0.5, 0.6]
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Attack Deterministic Detector
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Attack Randomized Detector
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2.80, Untargeted
4.14, Targeted-Next

4.67, Targeted-LL

3.63, Untargeted
5.48, Targeted-Next

5.76, Targeted-LL



Conclusion

* Feature Squeezing hardens deep learning models.

* Feature Squeezing gives advantages to the defense side in the arms
race with adaptive adversary.



Thank you!

Reproduce our results using EvadeML-Zoo: https://evadeML.org/zoo
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