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Notation
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Notation

X The data matrix

Σ The covariance matrix.

Ω The precision matrix.

p The number of features.

n The number of samples in the data matrix.

s The number of non-zero entries in the precision matrix.
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Review
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Review from last talk

We introduce different sGGM estimators and their solution.

We briefly introduce the three metrics used in evaluating an estimator.

We introduce different multi-task sGGMs estimators and their
optimization challenges.
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The metrics for evaluating an estimator

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Series – VIII Sep 22nd, 2017 8 / 30



Motivation I: Select a proper estimator

There may be a lot of similar estimators.

You need to decide which one to use.

You need some metrics to make the decision.
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Motivation II: Evaluate a novel method

You may come out a new estimator.

You want to know whether this novel estimator is no worse than the
previous ones.

Then you need some metrics to evaluate the estimator.
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Background: Two major properties

Two major properties: Accuracy and Speed.

Accuracy:
I Statistical Convergence rate
I how close to the Truth
I Statisticians

Speed:
I Optimization convergence rate
I Optimization researchers
I Computational complexity
I Computer Scientists
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Overview Figure
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Statistical Convergence Rate
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Statistical Convergence Rate : Definition

The task for an estimator is parameter estimation.

Suppose the parameter you need to estimate is θ, the truth is θ∗

‖ θ − θ∗ ‖ or R(θ − θ∗)
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A simple example: Estimate the mean

On the whiteboard.
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

argmin
θ
R(θ) (4.1)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn (4.2)

Here B∗(φ̂) is a backward mapping for φ̂.
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin
θ
||θ||1 (4.3)

Subject to: ||θ − (XTX + εI )−1XT y ||∞ ≤ λn (4.4)
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Hands on: Elementary Estimator for high-dimensional
linear regression

On the whiteboard.
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Hands on: DIFFEE

On the whiteboard.
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Conclusions

In high-dimensional setting, related to log p
n .

Equivalent estimators still have differences in constants or constraints
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Optimization Convergence Rate
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Optimization Convergence Rate : Definition

Linearly Converge: lim
k→∞

|θk+1−L|
|θk−L| = µk

I Linearly, if µk ∈ (0, 1)
I Superlinearly, if µk → 0 when k →∞.
I Sublinearly, if µk → 1 when k →∞

Higher order: lim
k→∞

|xk+1−L|
|xk−L|q > 0.

Closed form solution

Closed form ≥ Higher order ≥ linear
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Optimization Convergence Rate: Basic Results

Gradient Descent based method: Linear

I gradient descent
I SGD
I ADMM / proximal gradient descent

Newton method based method: Quadratic

Elementary Estimator: Closed form solution
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Optimization Convergence Rate: Different methods

Single sGGM Multiple sGGMs Differential Network

Method: GLasso CLIME EEGM JGL FASJEM SIMULE SIMULEE DIFFEE DIFF-CLIME

Rate of Convergence Linear NA Closed form Linear Linear NA NA Closed form NA
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Computational Complexity
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Computational Complexity: Definition

Complexity of an algorithm is the amount of resources required for
running it.

In machine learning, it is mainly related to n and p.

Use big O notation
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Computational Complexity: how to calculate

Some cases:
I Matrix Multiplication: O(np2)
I Matrix inversion O(p3)
I SVD inversion O(p3)
I soft-thresholding O(p2)

How to calculate:
I Num of Iter × Computational complexity of each Iter
I Direct calculate e.g., Closed form solution
I Use existing method e.g., linear programming
I Special case: linear convergence.
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Computational Complexity: Different methods

Single sGGM Multiple sGGMs Differential Network

Method: GLasso CLIME EEGM JGL FASJEM SIMULE SIMULEE DIFFEE DIFF-CLIME

Computational
Complexity

O(Tp2) O(p5) O(p2) O(Tp3) O(Tp2) O(K 4p5) O(p2K 4) O(p2) O(p8)
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Summary

We introduce the statistical convergence rate.

We introduce the optimization convergence rate.

We introduce the computational complexity.
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