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Notation

SRRV ETSR ETTL RO (VAT Joint Gaussian Graphical Model Series — VIII Sep 22nd, 2017 4 /30



Notation

X The data matrix

> The covariance matrix.

Q The precision matrix.

p The number of features.

n The number of samples in the data matrix.

s The number of non-zero entries in the precision matrix.
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Review
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Review from last talk

@ We introduce different sGGM estimators and their solution.
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Review from last talk

@ We introduce different sGGM estimators and their solution.

@ We briefly introduce the three metrics used in evaluating an estimator.

ST RPN AN METAR ENTTL MO OLNISIN Joint Gaussian Graphical Model Series — VIII Sep 22nd, 2017 7 /30



Review from last talk

@ We introduce different sGGM estimators and their solution.
@ We briefly introduce the three metrics used in evaluating an estimator.

@ We introduce different multi-task sGGMs estimators and their
optimization challenges.
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The metrics for evaluating an estimator J
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Motivation |: Select a proper estimator

@ There may be a lot of similar estimators.

%
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Motivation |: Select a proper estimator

@ There may be a lot of similar estimators.

@ You need to decide which one to use.

%
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Motivation |: Select a proper estimator

@ There may be a lot of similar estimators.
@ You need to decide which one to use.

@ You need some metrics to make the decision.
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Motivation |l: Evaluate a novel method

@ You may come out a new estimator.
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Motivation |l: Evaluate a novel method

@ You may come out a new estimator.

@ You want to know whether this novel estimator is no worse than the
previous ones.
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Motivation |l: Evaluate a novel method

@ You may come out a new estimator.

@ You want to know whether this novel estimator is no worse than the
previous ones.

@ Then you need some metrics to evaluate the estimator.
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Background: Two major properties

@ Two major properties: Accuracy and Speed.
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Background: Two major properties

@ Two major properties: Accuracy and Speed.
@ Accuracy:

» Statistical Convergence rate
» how close to the Truth
» Statisticians
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Background: Two major properties

@ Two major properties: Accuracy and Speed.
@ Accuracy:

» Statistical Convergence rate
» how close to the Truth
» Statisticians
@ Speed:
» Optimization convergence rate
» Optimization researchers
» Computational complexity
» Computer Scientists
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Statistical Convergence Rate
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Statistical Convergence Rate : Definition

@ The task for an estimator is parameter estimation.
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Statistical Convergence Rate : Definition

@ The task for an estimator is parameter estimation.

@ Suppose the parameter you need to estimate is 6, the truth is 6*
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Statistical Convergence Rate : Definition

@ The task for an estimator is parameter estimation.
@ Suppose the parameter you need to estimate is 6, the truth is 6*
° ||0—0"]| or R(O—0%)
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A simple example: Estimate the mean

On the whiteboard.
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

arg;ninR(G) (4.1)

-~

Subject to: R*(6 — B*(¢)) < An (4.2)

Here B*(gg) is a backward mapping for .
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin||6||1 (4.3)
0

Subject to: |8 — (XX + €)X Ty|loo < An (4.4)

v
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Hands on: Elementary Estimator for high-dimensional
linear regression

On the whiteboard.
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Hands on: DIFFEE

On the whiteboard.
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Conclusions

@ In high-dimensional setting, related to '°§p.

@ Equivalent estimators still have differences in constants or constraints
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Optimization Convergence Rate J
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Optimization Convergence Rate : Definition

@ Linearly Converge: [im =Ll P
k—00 [0k —L|
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Optimization Convergence Rate : Definition

@ Linearly Converge: kILn;O% = Lk
@ » Linearly, if ux € (0,1)
» Superlinearly, if ux — 0 when k — oc.
» Sublinearly, if ux — 1 when k — oo
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Optimization Convergence Rate : Definition

@ Linearly Converge: kILn;O% = Lk
@ » Linearly, if ux € (0,1)
» Superlinearly, if ux — 0 when k — oc.
» Sublinearly, if ux — 1 when k — oo

lim X1 —L]| >0
k—oo k=L ’

@ Higher order:
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Optimization Convergence Rate : Definition

Linearly Converge: lim =Ll P
k—00 [0k —L|

@ » Linearly, if ux € (0,1)
» Superlinearly, if ux — 0 when k — oc.
> Sublinearly, if gx — 1 when k — o0
s Xk —L
k||_>moo eIl 0.
Closed form solution

Higher order:
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Optimization Convergence Rate : Definition

Linearly Converge: lim Orri=tl P
k—00 [0k —L|

@ » Linearly, if ux € (0,1)
» Superlinearly, if ux — 0 when k — oc.
> Sublinearly, if gx — 1 when k — o0
s Xk —L
k||_>moo eIl 0.
Closed form solution

Higher order:

Closed form > Higher order > linear
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Optimization Convergence Rate: Basic Results

@ Gradient Descent based method: Linear
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Optimization Convergence Rate: Basic Results

@ Gradient Descent based method: Linear

@ » gradient descent
» SGD
» ADMM / proximal gradient descent
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Optimization Convergence Rate: Basic Results

@ Gradient Descent based method: Linear

@ » gradient descent
» SGD
» ADMM / proximal gradient descent

@ Newton method based method: Quadratic
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Optimization Convergence Rate: Basic Results

Gradient Descent based method: Linear

» gradient descent
» SGD
» ADMM / proximal gradient descent

Newton method based method: Quadratic

Elementary Estimator: Closed form solution
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Optimization Convergence Rate: Different methods

Single sGGM Multiple sGGMs
Method: GlLasso | CLIME EEGM JGL | FASJEM
Rate of Convergence | Linear NA Closed form | Linear | Linear
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Computational Complexity
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Computational Complexity: Definition

@ Complexity of an algorithm is the amount of resources required for
running it.
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Computational Complexity: Definition

@ Complexity of an algorithm is the amount of resources required for
running it.

@ In machine learning, it is mainly related to n and p.
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Computational Complexity: Definition

@ Complexity of an algorithm is the amount of resources required for
running it.

@ In machine learning, it is mainly related to n and p.

@ Use big O notation
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Computational Complexity: how to calculate

@ Some cases:

Matrix Multiplication: O(np?)
» Matrix inversion O(p%)

» SVD inversion O(p?)

» soft-thresholding O(p?)

v

TG RUENT- AN VETR ENT TN O ULNIESIN Joint Gaussian Graphical Model Series — VIII Sep 22nd, 2017 27 / 30



Computational Complexity: how to calculate

@ Some cases:
» Matrix Multiplication: O(np?)
» Matrix inversion O(p%)
» SVD inversion O(p?)
» soft-thresholding O(p?)
@ How to calculate:
» Num of Iter x Computational complexity of each Iter
» Direct calculate e.g., Closed form solution
» Use existing method e.g., linear programming
» Special case: linear convergence.
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Computational Complexity: Different methods

Single sGGM Multiple sGGMs
Method: GLasso | CLIME | EEGM JGL FASJEM | SIMUL
Computational 5 5 5 3 5 4
Complexity O(Tp%) | O(p°) | O(p%) | O(Tp®) | O(Tp%) | O(K"p
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Summary

@ We introduce the statistical convergence rate.
@ We introduce the optimization convergence rate.

@ We introduce the computational complexity.
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