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Notation
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Notation

X() The i-th data matrix

¥ () The i-th covariance matrix.

QU) The i-th precision matrix.
p The number of features.
n; The number of samples in the i-th data matrix.
K The number of tasks.
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Review
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Review from last talk

@ We introduce four estimators of sparse Gaussian Graphical Model.

@ We finish most contents about sparse Gaussian Graphical Model in
the last five talks.
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Review of Gaussian Graphical Model

Suppose the precision matrix Q = ¥ 1.
The log-likelihood of Q equals to In det(Q) — tr (Q§)
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Multi-task Learning
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Multi-task Learning

Multi-task Learning

Multi-task learning (MTL) is a subfield of machine learning in which
multiple learning tasks are solved at the same time, while exploiting
commonalities and differences across tasks.

This can result in improved learning efficiency and prediction accuracy for
the task-specific models, when compared to training the models separately.)
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Multi-task Learning

Context/Task(1)

@ Normal Cell data

Commonality Differences

Context/Task(2)

@ Cancer Cell data
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Multi-task Learning—Linear Classifier Example

Linear Classifier

f(x) = sgn(w’ x + b) (3.1)J

Multi-task Linear Classifiers
For the /i-th task,

fi(x) = sgn((wd + w, )x + b) (3.2)1
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Multi-task sGGMs
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Multi-task sGGMs

Problem

Input: {X(}

Output: {Q(D}
Assumption |: Sparsity

Assumption Il: Commonalities and Differences
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Multi-task sGGMs

Likelihood
3 ni(In det(Q()) — tr (Q(")§<">)) (4.1)

i

Likelihood with sparsity assumption

3 ni(In det(Q) — tr (Q<">§(">)) (4.2)

Subject to: [|Q)]|; <t (4.3)

v
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Multi-task sGGMs

Likelihood with multi-task setting

3 ni(In det(Q) — tr (Q(">§("))) (4.4)
Subject to: [|Q7]|; <t (4.5)
PQ®, 0B, o) < (4.6)

Joint Graphical Lasso
[Danaher et al.(2013)Danaher, Wang, and Witten]

—Zn,(lndet ) tr (Q( )5t )))+)\1\|Q()||1+)\2P(Q(1) Q@ ... )

(47)
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Optimization Challenge of Multi-task sGGMs J
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General formulation

Likelihood with multi-task setting
~ ni(Indet(Q) + tr (Q<f>§(f>)) (5.1)
Subject to: [|Q7]|; <t (5.2)
PQM, @ . Q) <t (5.3)
General formulation
> f(x) +&(2) (5.4)
Subject to: Ax + Bz =c¢ (5.5)
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Optimization Challenge
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Solution—Distributed optimization

Alternating direction method of multipliers

» ADMM problem form (with f, g convex)

minimize  f(z) + g(2)
subject to Az + Bz=¢

— two sets of variables, with separable objective

> Ly(x,2,y) = f(z) +g(z) +y7 (Az + Bz — ) + (p/2) | Az + Bz — |}

» ADMM:
zFtl = argmin, L,(z, 2%, y*) // x-minimization
21 = argmin, L,(z"*!, 2, y*) // z-minimization
y* = b 4 p(AxF 4+ B2FYL — ) // dual update
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Optimization Challenges

@ For K > 2 tasks, you need carefully derive the whole optimization
solution.

@ Each step in each iteration is still a sub-optimization problem.
Sometimes, it is already difficult to solve.

@ This method is at most linear Convergence.
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Joint Graphical Lasso Example
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JGL-group Lasso example

L,({&}{Z}.{Uh) = -

M=

(s (lug det @) — trace(S(k)G(k))) +P({Z})

=
Il

1

+
[
»Mx

j@® —z® L gk,
=1

K K
n 2
PO =M S+ 3T [ S
k=1 izj

i#j k=1

(a) {@)(1)} + arg minge) {LP ({@}, {Z(z_l)}, {U(i—l)})}-
(b) {2y} & argminzy {L, ({8} {2}, {Ui-1y}) }-
(©) {U)} « {U-n} + ({8} = {Zi)})-
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JGL solution — updating @)

For k=1,..., K, update (-)Ef)) as the minimizer (with respect to @*)) of

—ny (log det @) — trace(S(k)(-)(k))) + gH@(’“) - ZEQI) + UEQ1)||%~

Letting VDV denote the eigendecomp0~sition of ) - pZEle)/ ng + pUEg 1) /nk, the solution is
given (Witten & Tibshirani 2009) by VDV7, where D is the diagonal matrix with jth diagonal

element n
k
5 (—=Dss+ /D2 + /1) -

Set the gradient to be 0, we can get the SVD part of the solution.
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JGL solution — updating Z()

where
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An example for difficulty of ADMM

Algorithm 1: ADMM algorithm for the PNJGL optimization problem (6)
input: p > 0,4 > 1 fpax > 0;
Initialize: Primal variables to the identity matrix and dual variables to the zero matrix;
for ¢ = :tmax do
P ups
while Not converged do
' Expand (§(@2+ 1+ W +2') = (0" +mS' +F),p.m ):

.. Expand(%(@' —(l'+M’)+Z:)—3%(Q3+n:S:—F)Ap.n;):
Z'+— T (9’+‘:—.%‘-) fori=1,2;

:'kq;(;(u'f_uw(e' —92))+:';(F—G)A§§):

W 3(T =V +(0' - %) + 55 (F+G");

Fe F4p(@ -0 —(V+));

G G+p(V —W7);

O~ Q@ +p@-2Z)fori=12
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Summary

@ We introduce the multi-task sGGMs problem.
@ We introduce the challenges of the optimization for this problem.
@ We introduce the ADMM method and its drawbacks.
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