Joint Gaussian Graphical Model Series - V sparse Gaussian Graphical Model estimators

Beilun Wang
Advisor: Yanjun Qi
${ }^{1}$ Department of Computer Science, University of Virginia http://jointggm.org/

July 28th, 2017

Road Map

Outline

(1) Notation
(2) Review
(3) Neighborhood Method
(4) Graphical Lasso

(5) CLIME

(6) Elementary Estimator for Gaussian Graphical Model

Notation

Notation

Σ The covariance matrix.
Ω The precision matrix.
p The number of features.
n The number of samples.

Review

Review from last talk

- Regularized M-estimator $\underset{\theta}{\operatorname{argmin}} \mathcal{L}(\theta)+\lambda_{n} \mathcal{R}(\theta)$
- a unified framework to analyze the statistical convergence rate for high-dimensional statistics
- Elementary Estimator

Review of Gaussian Graphical Model

Suppose the precision matrix $\Omega=\Sigma^{-1}$. The log-likelihood of Ω equals to $\ln \operatorname{det}(\Omega)-\operatorname{tr}(\Omega \widehat{S})$
In this talk, we will use this likelihood to derive several estimators of sparse Gaussian Graphical Model (sGGM)

Neighborhood Method

Neighborhood approach

If $X \sim N(0, \Sigma)$ and let $X_{1}=X_{j}$.
$X_{j} \mid X_{\backslash j} N\left(\Sigma_{\backslash j, j} \Sigma_{\backslash j, \backslash j}^{-1} X_{\backslash j}, \Sigma_{j j}-\Sigma_{\backslash j, j} \Sigma_{\backslash j, \backslash j}^{-1} \Sigma_{\backslash j, j}\right)$
Let $\alpha_{j}:=\Sigma_{\backslash j, j} \Sigma_{\backslash j, \backslash j}^{-1}$ and $\sigma_{j}^{2}:=\Sigma_{j j}-\Sigma_{\backslash j, j} \Sigma_{\backslash j, \backslash j}^{-1} \Sigma_{\backslash j, j}$. We have that

$$
\begin{equation*}
X_{j}=\alpha_{j}^{T} X_{, \backslash j}+\epsilon_{j} \tag{3.1}
\end{equation*}
$$

where $\epsilon_{j} \sim N\left(0, \sigma_{j}^{2}\right)$ is independent of $X_{, ~}$.

Neighborhood approach with sparse assumption

By the sparse assumption, we estimate each α_{j} by a lasso estimator

$$
\begin{equation*}
\alpha_{j}=\underset{\alpha_{j}}{\operatorname{argmin}}\left\|\alpha_{j}^{T} X_{, \backslash j}-X_{j}\right\|_{2}^{2}+\lambda\left\|\alpha_{j}\right\|_{1} \tag{3.2}
\end{equation*}
$$

Review of Lasso solution

Lasso

$$
\begin{equation*}
\beta=\underset{\beta}{\operatorname{argmin}}\left\|\beta^{\top} X-y\right\|_{2}^{2}+\lambda\|\beta\|_{1} \tag{3.3}
\end{equation*}
$$

subgradient method

$$
\begin{equation*}
g(\beta ; \lambda)=-2 X^{\top}(y-X \beta)+\lambda \operatorname{sgn}(\beta) \tag{3.4}
\end{equation*}
$$

Review of Lasso solution: State of the Art

We see that the proximity operator is important because x^{*} is a minimizer to the problem $\min _{x \in \mathcal{H}} F(x)+R(x)$ if and only if $x^{*}=\operatorname{prox}_{\gamma R}\left(x^{*}-\gamma \nabla F\left(x^{*}\right)\right)$, where $\gamma>0 . \gamma$ is any positive real number.

Proximal gradient method

$$
\left(\operatorname{prox}_{\gamma R}(x)\right)_{i}= \begin{cases}x_{i}-\gamma, & x_{i}>\gamma \tag{3.5}\\ 0, & \left|x_{i}\right| \leq \gamma \\ x_{i}+\gamma, & x_{i}<-\gamma\end{cases}
$$

By using the fixed point method, you can obtain the estimation of β.

Graphical Lasso

Graphical

Lasso[Friedman et al.(2008)Friedman, Hastie, and Tibshiran

We already have the log-likelihood as the loss function. Can we use it to obtain a similar estimator as Lasso?

$$
\begin{equation*}
\underset{\Omega}{\operatorname{argmin}}-\ln \operatorname{det}(\Omega)+\operatorname{tr}(\Omega \widehat{S})+\lambda_{n}\|\Omega\|_{1} \tag{4.1}
\end{equation*}
$$

Proximal gradient method to solve it

Let's do a practice in the white board.
Super Linear algorithm.
$\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|}=0$.

State of the art method: Big \& QUIC[Hsieh et al.(2011)Hsieh, Sustik, Dhillon, and Ravikum

Parallelized Coordinate descent. approximated quadratic algorithm. $\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{2}}<M$

CLIME

CLIME[Cai et al.(2011)Cai, Liu, and Luo]

CLIME

$$
\begin{equation*}
\underset{\Omega}{\operatorname{argmin}}\|\Omega\|_{1}, \text { subject to: }\|\Sigma \Omega-I\|_{\infty} \leq \lambda \tag{5.1}
\end{equation*}
$$

Here $\lambda>0$ is the tuning parameter.

By taking the first derivative of Eq. (4.1) and setting it equal to zero, the solution $\widehat{\Omega}_{\text {glasso }}$ also satisfies:

$$
\begin{equation*}
\widehat{\Omega}_{\text {glasso }}^{-1}-\widehat{\Sigma}=\lambda \widehat{Z} \tag{5.2}
\end{equation*}
$$

where \widehat{Z} is an element of the subdifferential $\partial\left\|\widehat{\Omega}_{\text {glasso }}\right\|_{1}$.

Column-wise estimator

$$
\operatorname{argmin}\|\beta\|_{1} \quad \text { subject to } \quad\left\|\Sigma \beta-e_{j}\right\|_{\infty} \leq \lambda
$$

CLIME can be estimated column-by-column.

Elementary Estimator for Gaussian Graphical Model

Elementary Estimator

Elementary
 Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

$$
\begin{equation*}
\underset{\theta}{\operatorname{argmin}} \mathcal{R}(\theta) \tag{6.1}
\end{equation*}
$$

Subject to: $\mathcal{R}^{*}\left(\theta-\mathcal{B}^{*}(\widehat{\phi})\right) \leq \lambda_{n}$
Here $\mathcal{B}^{*}(\widehat{\phi})$ is a backward mapping for $\widehat{\phi}$.

Example: sparse linear regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

$$
\begin{equation*}
\underset{o}{\operatorname{argmin}}\|\theta\|_{1} \tag{6.3}
\end{equation*}
$$

Subject to: $\left\|\theta-\left(X^{T} X+\epsilon I\right)^{-1} X^{T} y\right\|_{\infty} \leq \lambda_{n}$

Elementary Estimator for sGGM

$$
\begin{array}{r}
\underset{\Omega}{\operatorname{argmin}}|\Omega|_{1, \text { off }} \tag{6.5}\\
\text { subject to: }\left|\Omega-\left[T_{v}(\Sigma)\right]^{-1}\right|_{\infty, \text { off }} \leq \lambda_{n}
\end{array}
$$

Summary

- We review most sGGM estimators.

References I

固 T. Cai, W. Liu, and X. Luo.
A constrained $I 1$ minimization approach to sparse precision matrix estimation.
Journal of the American Statistical Association, 106(494):594-607, 2011.
R. Friedman, T. Hastie, and R. Tibshirani.

Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2008.
(1) C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. D. Ravikumar. Sparse inverse covariance matrix estimation using quadratic approximation.
In NIPS, pages 2330-2338, 2011.

References II

E. Yang, A. Lozano, and P. Ravikumar.

Elementary estimators for high-dimensional linear regression.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 388-396, 2014a.
E. Yang, A. C. Lozano, and P. K. Ravikumar.

Elementary estimators for graphical models.
In Advances in Neural Information Processing Systems, pages 2159-2167, 2014b.

