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Notation
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Notation

Y The covariance matrix.
Q The precision matrix.
p The number of features.

n The number of samples.
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Review
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Review from last talk

@ Regularized M-estimator argmin £(6) + A,R(0)
0

@ a unified framework to analyze the statistical convergence rate for
high-dimensional statistics

@ Elementary Estimator
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Review of Gaussian Graphical Model

Suppose the precision matrix Q = ¥ 1,
The log-likelihood of Q equals to Indet(Q2) — tr (Qg)

In this talk, we will use this likelihood to derive several estimators of sparse
Gaussian Graphical Model (sGGM)
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Neighborhood Method
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Neighborhood approach

If X ~ N(0,%) and let X; = X;.
Xj1Xy N(Z\ 50 Xy T = Ty Eygn,Eg)
Let o := Tyj, T and o7 i= Tj — Tyj, T Tyj;. We have that

X = oijXN- +¢€; (3.1)

where €; ~ N(0, aj2) is independent of X, ;.
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Neighborhood approach with sparse assumption

By the sparse assumption, we estimate each «a; by a lasso estimator

o = argmin||a] Xy — Xi|8 + Mlay s (3.2)
Qj

L RVET- AN METHR ENITLNOIMOLIISIN  Joint Gaussian Graphical Model Series — V July 28th, 2017 11 /29



Review of Lasso solution

Lasso
B:argglinHﬁTX—yH%JrAHﬂHl (33)
subgradient method
g(B:A) = —2XT(y — XB) + Asgn(p) (34)
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Review of Lasso solution: State of the Art

We see that the proximity operator is important because x* is a minimizer
to the problem minyecy F(x) + R(x) if and only if
x* = prox,g (x* —yVF(x*)), where v > 0. v is any positive real number.

Proximal gradient method

Xi =7, Xi>7
(prox'yR(X)),' = 07 |Xi| <7 (35)
Xi + Y, X < =7,

By using the fixed point method, you can obtain the estimation of .
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Graphical Lasso
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Graphical
Lasso[Friedman et al.(2008)Friedman, Hastie, and Tibshirani

We already have the log-likelihood as the loss function. Can we use it to
obtain a similar estimator as Lasso?

argmin — In det() + tr (Qs) + 9l (4.1)
Q
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Proximal gradient method to solve it

Let’'s do a practice in the white board.

Super Linear algorithm.

[Xepr—=x*| _

limg o0 —x*] —
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State of the art method: Big &
QUIC[Hsieh et al.(2011)Hsieh, Sustik, Dhillon, and Ravikum

Parallelized Coordinate descent.
approximated quadratic algorithm.

i |Xhp1=x"]
IImk_)Oo W <M
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CLIME
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CLIME[Cai et al.(2011)Cai, Liu, and Luo]

CLIME
argmin ||Q||1 , subject to: [|XQ — /||cc < A (5.1)
Q

Here A > 0 is the tuning parameter.
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By taking the first derivative of Eq. (4.1) and setting it equal to zero, the
solution 5550 also satisfies:
~ ~ ~
~ Qg,asso X=X ~ (5.2)
where Z is an element of the subdifferential 0||Qg/as50]1-
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Column-wise estimator

argmin ||f||1  subject to  [|X8 — €jf|oo < A

CLIME can be estimated column-by-column.
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Elementary Estimator for Gaussian Graphical Model J
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Elementary Estimator

Close-form Solution
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

argminR () (6.1)
0

Subject to: R*(6 — B*(¢)) < An (6.2)

Here B*(gg) is a backward mapping for .
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin||6||1 (6.3)
0

Subject to: |8 — (XX + €)X Ty|loo < An (6.4)

v
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Elementary Estimator for sGGM

argmin Q|1 o
Q (6.5)
subject t0:|Q — [Ty (X)] oo.off < An
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Summary

@ We review most sGGM estimators.
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