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Notation
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Notation

Σ The covariance matrix.

Ω The precision matrix.

p The number of features.

n The number of samples.
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Review
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Review from last talk

Regularized M-estimator argmin
θ
L(θ) + λnR(θ)

a unified framework to analyze the statistical convergence rate for
high-dimensional statistics

Elementary Estimator
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Review of Gaussian Graphical Model

Suppose the precision matrix Ω = Σ−1.

The log-likelihood of Ω equals to ln det(Ω)− tr
(

ΩŜ
)

In this talk, we will use this likelihood to derive several estimators of sparse
Gaussian Graphical Model (sGGM)
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Neighborhood Method
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Neighborhood approach

If X ∼ N(0,Σ) and let X1 = Xj .
Xj |X\j N(Σ\j ,j Σ

−1
\j ,\jX\j ,Σjj − Σ\j ,j Σ

−1
\j ,\j Σ\j ,j )

Let αj := Σ\j ,j Σ
−1
\j ,\j and σ2

j := Σjj − Σ\j ,j Σ
−1
\j ,\j Σ\j ,j . We have that

Xj = αT
j X,\j + εj (3.1)

where εj ∼ N(0, σ2
j ) is independent of X,\j .
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Neighborhood approach with sparse assumption

By the sparse assumption, we estimate each αj by a lasso estimator

αj = argmin
αj

||αT
j X,\j − Xj ||22 + λ||αj ||1 (3.2)
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Review of Lasso solution

Lasso

β = argmin
β
||βTX − y ||22 + λ||β||1 (3.3)

subgradient method

g(β;λ) = −2XT (y − Xβ) + λsgn(β) (3.4)
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Review of Lasso solution: State of the Art

We see that the proximity operator is important because x∗ is a minimizer
to the problem minx∈H F (x) + R(x) if and only if
x∗ = proxγR (x∗ − γ∇F (x∗)), where γ > 0. γ is any positive real number.

Proximal gradient method

(
proxγR(x)

)
i

=


xi − γ, xi > γ

0, |xi | ≤ γ
xi + γ, xi < −γ,

(3.5)

By using the fixed point method, you can obtain the estimation of β.

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Series – V July 28th, 2017 13 / 29



Graphical Lasso
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Graphical
Lasso[Friedman et al.(2008)Friedman, Hastie, and Tibshirani]

We already have the log-likelihood as the loss function. Can we use it to
obtain a similar estimator as Lasso?

argmin
Ω
− ln det(Ω) + tr

(
ΩŜ
)

+ λn||Ω||1 (4.1)
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Proximal gradient method to solve it

Let’s do a practice in the white board.

Super Linear algorithm.

limk→∞
|xk+1−x∗|
|xk−x∗| = 0.
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State of the art method: Big &
QUIC[Hsieh et al.(2011)Hsieh, Sustik, Dhillon, and Ravikumar]

Parallelized Coordinate descent.

approximated quadratic algorithm.

limk→∞
|xk+1−x∗|
|xk−x∗|2 < M
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CLIME
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CLIME[Cai et al.(2011)Cai, Liu, and Luo]

CLIME

argmin
Ω
||Ω||1 , subject to: ||ΣΩ− I ||∞ ≤ λ (5.1)

Here λ > 0 is the tuning parameter.
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By taking the first derivative of Eq. (4.1) and setting it equal to zero, the
solution Ω̂glasso also satisfies:

Ω̂−1
glasso − Σ̂ = λẐ (5.2)

where Ẑ is an element of the subdifferential ∂||Ω̂glasso ||1.
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Column-wise estimator

argmin ||β||1 subject to ||Σβ − ej ||∞ ≤ λ

CLIME can be estimated column-by-column.
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Elementary Estimator for Gaussian Graphical Model
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Elementary Estimator
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

argmin
θ
R(θ) (6.1)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn (6.2)

Here B∗(φ̂) is a backward mapping for φ̂.
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin
θ
||θ||1 (6.3)

Subject to: ||θ − (XTX + εI )−1XT y ||∞ ≤ λn (6.4)
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Elementary Estimator for sGGM

argmin
Ω
|Ω|1,off

subject to:|Ω− [Tv (Σ)]−1|∞,off ≤ λn

(6.5)
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Summary

We review most sGGM estimators.
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