Joint Gaussian Graphical Model Review Series – IV A Unified Framework for M-estimator and Elementary Estimators

Beilun Wang Advisor: Yanjun Qi

¹Department of Computer Science, University of Virginia http://jointggm.org/

July 21st, 2017

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Serie:

July 21st, 2017 1 / 30

Road Map

ヘロト 人間 と 人間 と 人間 と

Outline

A unified framework

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Serie:

Image: A matrix

< E

Notation

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Series

イロト イヨト イヨト イヨト

- $\boldsymbol{\mathcal{L}}$ The loss function.
- \mathcal{R} The Regularization function (norm).
- \mathcal{R}^* The Dual norm of \mathcal{R} .

(日) (周) (三) (三)

Review

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Series

■ ▶ ▲ ■ ▶ ■ 夕へで July 21st, 2017 6 / 30

▲□▶ ▲圖▶ ▲温▶ ▲温≯

- Likelihood of the precision matrix in the Gaussian case
- Graphical Model Basics

(日) (同) (三) (三)

Regularized M-estimator

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Series

■ ◆ ■ ▶ ■ つへで July 21st, 2017 8 / 30

・ロト ・ 日 ト ・ 日 ト ・ 日

Example

We want to buy a TV.

Constrains: 4K, 65 inch

Result:

Target:

SAMSUNG

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Serie:

■ ◆ ■ ▶ ■ クへで July 21st, 2017 9 / 30

<ロ> (日) (日) (日) (日) (日)

Regularized M-estimator

M-estimator

In statistics, M-estimators are a broad class of estimators, which are obtained as the minima of sums of functions of the data.

The parameters are estimated by argmin the sums of functions of the data.

target

 $\mathcal{L}(X,\theta)$ the loss function

Conditions

 $\mathcal{R}(\theta)$ the Regularization function

Therefore, the whole objective function is:

$$\operatorname*{argmin}_{\theta} \mathcal{L}(X,\theta) + \lambda_n \mathcal{R}(\theta) \tag{3.1}$$

Example: Linear Model

Let's use the linear regression model as an example.

Target

Find β , such that $X\beta = y$.

Constrains: Sparsity

- **Prediction Accuracy:** Sacrifice a little bias and reduce the variance. Improve the overall performance.
- **Interpretation:** With a large number of predictors, we often would like to determine a smaller subset that exhibits the strongest effect.

$$\underset{\beta}{\operatorname{argmin}}||y - X\beta||_2 \tag{3.2}$$

11 / 30

Subject to:
$$||\beta||_0 \le t$$
 (3.3)

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Series July 21st, 2017

Since $\ell_0\text{-norm}$ is not a convex function, we need the closest convex function of $\ell_0\text{-norm}.$

$$\underset{\beta}{\operatorname{argmin}} ||y - X\beta||_2 \tag{3.4}$$

Subject to: $||\beta||_1 \le t$ (3.5)

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Series

< ロト < 同ト < ヨト < ヨト

Other equivalent formulation

$$\underset{\beta}{\operatorname{argmin}} ||\beta||_{1}$$
(3.6)
Subject to: $y = X\beta$ (3.7)

(日) (周) (三) (三)

- 3

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Serie: July 21st, 2017 13 / 30

A unified framework

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Serie: July 21st, 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Three major Criteria

(日) (同) (三) (三)

3

- Statistical Convergence Rate: How close is between your estimated parameter and the true parameter. It corresponds to estimation error and approximation error.
- Computational Complexity: How fast the algorithm is with respect to certain parameters, e.g., *n* and *p*.
- Optimization Rate of Convergence: How fast each optimization step move to the estimated parameter, such as linear or quadratic.

Traditional statisticians focus on the statistical convergence rate (Accuracy).

- low dimension: when *n* is large, the error is asymptotic 0 by the law of large number.
- high dimension (i.e., $p/n \rightarrow c \neq 0$): the error is not asymptotic 0.

High dimensional analysis is relative hard. Traditionally, we need carefully proof for every estimator.

17 / 30

Three major Criteria

(日) (同) (三) (三)

3

A unified framework for M-estimator [Negahban et al.(2009)Negahban, Yu, Wainwright, and Ravi

Decomposability of \mathcal{R}

Suppose a subspace $\mathcal{M} \subset \mathbb{R}^p$, a norm-based regularizer \mathcal{R} is decomposable with respect to $(\mathcal{M}, \bar{\mathcal{M}}^{\perp})$ if

$$\mathcal{R}(\theta + \gamma) = \mathcal{R}(\theta) + \mathcal{R}(\gamma)$$

for all
$$\theta \in \mathcal{M}$$
 and $\gamma \in \overline{\mathcal{M}}^{\perp}$, where
 $\overline{\mathcal{M}}^{\perp} := \{ v \in \mathbb{R}^{p} | < u, v >= 0 \forall u \in \overline{\mathcal{M}} \}.$

Subspace compatibility constant

$$\Phi(\mathcal{M}) := \sup_{u \in \mathcal{M} \setminus \{0\}} rac{\mathcal{R}(u)}{||u||}$$

with respect to the pair $(\mathcal{R}, || \cdot ||)$.

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Serie:

July 21st, 2017 19 / 30

A unified framework for M-estimator [Negahban et al.(2009)Negahban, Yu, Wainwright, and Ravi

Example: ℓ_1

 ℓ_1 is decomposable and the $\Phi(\mathcal{M}) = \sqrt{s}$ with respect to (ℓ_1, ℓ_2) .

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Series July 21st, 2017

20 / 30

A unified framework for M-estimator

$$||\widehat{\theta}_{\lambda_n} - \theta^*||_2^2 \le O(\frac{s\log p}{n})$$

In high dimensional setting, the sparsity assumption actually improves the convergence rate a lot.

22 / 30

Elementary Estimator

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Serie: July 21st, 2017

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

23 / 30

We have a very powerful tool to easily prove the convergence rate. We can also follow the similar process to prove the convergence rate for estimators like Dantzig Selector.

However, a lot of statistical method is slow when p and n are large and they are not scalable at all.

Are there any estimators with close form solution for the statistic problem, which also achieve the optimal convergence rate?

Three major Criteria

(日) (同) (三) (三)

3

Three major Criteria

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Serie:

July 21st, 2017 26 / 30

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Elementary Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

$$\underset{\theta}{\operatorname{argmin}} \mathcal{R}(\theta) \tag{5.1}$$

Subject to: $\mathcal{R}^*(\theta - \mathcal{B}^*(\widehat{\phi})) \leq \lambda_n$ (5.2)

Here $\mathcal{B}^*(\widehat{\phi})$ is a backward mapping for $\widehat{\phi}$.

Beilun Wang, Advisor: Yanjun Qi (UniversityJoint Gaussian Graphical Model Review Series

Example: sparse linear regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

$$\underset{\theta}{\operatorname{argmin}} ||\theta||_{1}$$
Subject to: $||\theta - (X^{T}X + \epsilon I)^{-1}X^{T}y||_{\infty} \leq \lambda_{n}$
(5.4)

Beilun Wang, Advisor: Yanjun Qi (University Joint Gaussian Graphical Model Review Series July 21st, 2017

- We review the unified framework for M-estimator, which can be applied to most regularized M-estimator problem
- Following the similar proof strategy, we have the set of elementary estimators.

29 / 30

References I

S. Negahban, B. Yu, M. J. Wainwright, and P. K. Ravikumar. A unified framework for high-dimensional analysis of *m*-estimators with decomposable regularizers.

In Advances in Neural Information Processing Systems, pages 1348–1356, 2009.

 E. Yang, A. Lozano, and P. Ravikumar.
 Elementary estimators for high-dimensional linear regression.
 In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 388–396, 2014a.

E. Yang, A. C. Lozano, and P. K. Ravikumar.
 Elementary estimators for graphical models.
 In Advances in Neural Information Processing Systems, pages 2159–2167, 2014b.

□ ▶ ▲ □ ▶ ▲ □