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Notation
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Notation

L The loss function.

R The Regularization function (norm).

R∗ The Dual norm of R.
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Review
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Review from last talk

Likelihood of the precision matrix in the Gaussian case

Graphical Model Basics
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Regularized M-estimator
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Example
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Regularized M-estimator

M-estimator

In statistics, M-estimators are a broad class of estimators, which are
obtained as the minima of sums of functions of the data.
The parameters are estimated by argmin the sums of functions of the data.

target

L(X , θ) the loss function

Conditions

R(θ) the Regularization function

Therefore, the whole objective function is:

argmin
θ
L(X , θ) + λnR(θ) (3.1)
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Example: Linear Model

Let’s use the linear regression model as an example.

Target

Find β, such that Xβ = y .

Constrains: Sparsity

Prediction Accuracy: Sacrifice a little bias and reduce the variance.
Improve the overall performance.

Interpretation: With a large number of predictors, we often would
like to determine a smaller subset that exhibits the strongest effect.

argmin
β
||y − Xβ||2 (3.2)

Subject to: ||β||0 ≤ t (3.3)
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Example: Lasso

Since `0-norm is not a convex function, we need the closest convex
function of `0-norm.

argmin
β
||y − Xβ||2 (3.4)

Subject to: ||β||1 ≤ t (3.5)

Lasso

argmin
β
||y − Xβ||2 + λn||β||1
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Other equivalent formulation

argmin
β
||β||1 (3.6)

Subject to: y = Xβ (3.7)

Dantzig selector

argmin
β
||β||1 (3.8)

Subject to: ||XT (Xβ − y)||∞ ≤ λn (3.9)
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A unified framework
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Three major Criteria
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Three major Criteria

Statistical Convergence Rate: How close is between your estimated
parameter and the true parameter. It corresponds to estimation error
and approximation error.

Computational Complexity: How fast the algorithm is with respect to
certain parameters, e.g., n and p.

Optimization Rate of Convergence: How fast each optimization step
move to the estimated parameter, such as linear or quadratic.

Traditional statisticians focus on the statistical convergence rate
(Accuracy).
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High dimension vs low dimension

low dimension: when n is large, the error is asymptotic 0 by the law
of large number.

high dimension (i.e.,p/n→ c 6= 0): the error is not asymptotic 0.

High dimensional analysis is relative hard. Traditionally, we need carefully
proof for every estimator.
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Three major Criteria
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A unified framework for M-estimator
[Negahban et al.(2009)Negahban, Yu, Wainwright, and Ravikumar]

Decomposability of R
Suppose a subspace M⊂ Rp, a norm-based regularizer R is
decomposable with respect to (M,M̄⊥) if

R(θ + γ) = R(θ) +R(γ)

for all θ ∈M and γ ∈ M̄⊥, where
M̄⊥ := {v ∈ Rp| < u, v >= 0∀u ∈ M̄}.

Subspace compatibility constant

Φ(M) := sup
u∈M\{0}

R(u)

||u||

with respect to the pair (R, || · ||).
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A unified framework for M-estimator
[Negahban et al.(2009)Negahban, Yu, Wainwright, and Ravikumar]

Example: `1

`1 is decomposable and the Φ(M) =
√
s with respect to (`1, `2).
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A unified framework for M-estimator
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Example: Lasso

||θ̂λn − θ∗||22 ≤ O(
s log p

n
)

In high dimensional setting, the sparsity assumption actually improves the
convergence rate a lot.
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Elementary Estimator
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We have a very powerful tool to easily prove the convergence rate. We can
also follow the similar process to prove the convergence rate for estimators
like Dantzig Selector.
However, a lot of statistical method is slow when p and n are large and
they are not scalable at all.
Are there any estimators with close form solution for the statistic problem,
which also achieve the optimal convergence rate?
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Three major Criteria
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Three major Criteria
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Elementary
Estimator[Yang et al.(2014b)Yang, Lozano, and Ravikumar]

argmin
θ
R(θ) (5.1)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn (5.2)

Here B∗(φ̂) is a backward mapping for φ̂.
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Example: sparse linear
regression[Yang et al.(2014a)Yang, Lozano, and Ravikumar]

argmin
θ
||θ||1 (5.3)

Subject to: ||θ − (XTX + εI )−1XT y ||∞ ≤ λn (5.4)
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Summary

We review the unified framework for M-estimator, which can be
applied to most regularized M-estimator problem

Following the similar proof strategy, we have the set of elementary
estimators.
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