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Notation
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Notation

P The probability measure.

Ω The sample space.

F The event set.

X ,Y ,Z The random variables.
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Probability
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Probability Space

Probability Space

Let (Ω,F ,P) be the probability space.

Ω be an arbitrary non-empty set.

F ⊂ 2Ω is a set of events.

P is the probability measure. In another word, a function : F → [0, 1].
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Events

F contains Ω.

F is closed under complements.

F is closed under countable unions.
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Probability Measure
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Random Variable

Random Variable

Let X : Ω→ R be a random variable. X is a measurable function.
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Random Variable
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Probability Distribution

Probability Distribution function

Let F (x) : R→ [0, 1] = P[X < x ] where x ∈ R.

X = Y , they follow same distribution?

FX = FY , then X = Y ?
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Joint Probability

Joint Probability

The probability distribution of random vector (X ,Y ).
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Joint Probability
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Marginal Probability

Marginal Probability

A pair of random variable (X ,Y ), the probability distribution of X .
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Joint Probability
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Conditional Distribution

Conditional Distribution

Given the information of Y , the probability distribution of X . Notation
X |Y .
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Joint Probability
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Relationship

Relationship

P(X = x ,Y = y) = P(Y = y)P(X = x |Y = y)
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Dependence and Correlation
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Independence

Independence

X and Y are independent if and only if pX ,Y (x , y) = pX (x)pY (y), where
p is the probability density function.

Independence

Y |X = Y

Filp coin example

Causal relationship

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – I June 23rd, 2017 20 / 34



Correlation

Covariance

Cov(X ,Y ) = E[(X − µX )(Y − µY )], where µX , µY is the mean vector.

Correlation

ρ(X ,Y ) = Cov(X ,Y )
σXσY

Linear relationship

Linear dependency between X and Y .

ρ(X ,Y ) = 1 means that X and Y are in the same linear direction
while ρ(X ,Y ) = −1 means that X and Y are in the reverse linear
direction.

ρ(X ,Y ) = 1 means that when X increase, Y increase with all the
points lying on the same line.

ρ(X ,Y ) = 0 means that X and Y are perpendicular with each other.
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Correlation
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Dependence and Correlation

Correlation is easy to estimate the value while independence is a
relationship to infer.

Dependence is stronger relationship than correlation.

In another word, if X and Y are independent, ρ(X ,Y ) = 0. However,
the reverse doesn’t hold.

For example, suppose the random variable X is symmetrically
distributed about zero and Y = X 2.
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Gaussian Example

The distribution of bivariate Gaussian is:

f (x , y) =
1

2πσXσY
√

1− ρ2
exp

(
− 1

2(1− ρ2)
∗
(

(x − µX )2

σ2
X

+
(y − µY )2

σ2
Y

− 2ρ(x − µX )(y − µY )

σXσY

))
(3.1)
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Gaussian Example

Suppose (X ,Y ) are uncorrelated. i.e.,(X ,Y ) ∼ N(0, diag(σ2
X , σ

2
Y )).

f (x , y) =
1

2πσXσY
exp(−1

2
(

(x − µX )2

σ2
X

+
(y − µY )2

σ2
Y

))

=
1√

2πσX
exp(−1

2

(x − µX )2

σ2
X

)
1√

2πσY
exp(−1

2

(y − µY )2

σ2
Y

)

= f (x)f (y)

(3.2)

Therefore, if (X ,Y ) follows bivariate Gaussian, (X ,Y ) are uncorrelated if
and only if (X ,Y ) are independent.
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Summary

Correlation is easy to estimate the value while independence is a
relationship to infer.

In the Gaussian Case, they are equivalent.

From the structure learning angle, dependence is about the causal
relationship, while correlation is, more specifically, the linear
relationship.
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Conditional Dependence and Partial Correlation
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Conditional Dependence

Let’s consider a more complicated case. There is another third random
variable Z . There are two ways to view the conditional dependence.

X and Y are independent conditional on Z

X |Z and Y |Z are independent

Conditional Dependence

X and Y are independent on Z if and only if
pX ,Y |Z (x , y) = pX |Z (x)pY |Z (y), where p is the probability density
function.
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Partial Correlation

Partial Correlation

Formally, the partial correlation between X and Y given random variable
Z , written ρXY ·Z , is the correlation between the residuals RX and RY

resulting from the linear regression of X with Z and of Y with Z ,
respectively.
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Partial Correlation
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Partial Correlation

Partial Correlation Calculation

Suppose P = Σ−1 (Σ is covariance matrix or Correlation matrix)
ρXiXj ·V\{Xi ,Xj} = − pij√

piipjj
.

The value is exactly related to the precision matrix (the inverse of
covariance matrix)!
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Conditional Dependence and Partial Correlation

Similarly, in the Gaussian Case, they are equivalent.

A detailed derivation is in the next talk.
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Gaussian Case

Partial Correlation is easy to estimate the value while conditional
independence is a relationship to infer.

Conditional Dependence is stronger relationship than partial
correlation.

In another word, if X |Z and Y |Z are independent, ρ(X ,Y · Z ) = 0.
However, the reverse doesn’t hold.
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Summary

Partial correlation is easy to estimate the value while conditional
independence is a relationship to infer.

In the Gaussian Case, they are equivalent.

From the structure learning angle, conditional dependence is about
the causal relationship, while partial correlation is, more specifically,
the linear relationship.
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