

http://deepchrome.net

DeepChrome:

Interpretable Deep Learning for Sequential Data Analysis in Biomedicine

Dr. Yanjun Qi

DATA Scholar 2021 @ NIA

Associate Professor, Department of Computer Science @

University of Virginia

Basics of Machine Learning

Building Deep Neural Nets

Deep Learning is Changing the World

Control learning

Text analysis

Peter H. van Oppen , Deliveren of the Board A Cold Executive Utilization Mr. van Oppen has served as **Executive Utilization of ADIC** since 1986. Until its acquisition by Crane Co. in October 1996, Mr. van Oppen served as **Executive Utilization** Oppen worked as a **Executive Utilization**. Prior to 1985, Mr. van Oppen worked as a **Executive Utilization** at Price Waterhouse LLP and at Bain & Company in Boston and London. He has additional experience in medical electronics and venture capital. Mr. van Oppen also serves as a **Executive Utilization**, and Spacelabs Medical, Inc.. He holds a B.A. from Whitman College and an M.B.A. from Harvard Business School, where he was a **Baker Scholar**.

Object recognition

8/24/21

Deep Learning Excellence on Sequential Data

Sequential Data

RNA

PROTEIN

DNA

PROTEIN TGKHQFTVKE

RNA UAGACUGUAGACUGUGAC

DNA TAGATGTAGACTGTGATC

Biology is super complex

alternative splicing, reverse transcriptase, introns, junk DNA, epigenetics, RNA viruses, trans-splicing, transposons, prions, epigenetics, gene rearrangements and many more

Image Credit: Brendan Frey

Building Deep Neural Nets

This Talk: Using Deep Representation Learning to Read and Understand the Human Genome and Proteome

1. Predict

2. Interpret

Our Goal: Interpretable Deep Learning Models

Gene Expressed

ATGCTCGATACTGAGACTACTGAGAC TGAGACTCTAGA TCTGACTACTCACG

ATGCTCGATACTGAGACTACTGAGACTGAGACTCTAGA TCTGACTACTCACG

what causes a gene to be expressed?

ATGCTCGATGCTAATACGACTGAGATTACTGAGACTGAGACTCTAGAT

To understand gene regulation

gene repressed

ATGCTCGATGCTAATACGACTGAGATTACTGAGACTGAGACTCTAGAT

UNIVERSITY 19

What controls Gene Regulation? How?

ATGCTCGATGCTAATACGACTGAGATTACTGAGACTGAGACTCTAGAT

etttggggggtatgtacaggtgcccaccaccacgcctagctaatttt tagetgggactacaggtgcccaccaccaccgcctagctaatttt caragtagetggggactacaggeg tcoattgaattgagtgagtgagtgagtggaaactacggaagttcagtggaaactacggaagttcagtgaaatggaaactgacttaataatggggattgagtgaaatcaggggattcoattaataatggggattcoattaatga tagccaa accatagcaccacctcatccccct

"Genome. Bought the book. Hard to read."

-Eric Lander, Principal Leader of the Human Genome Project

Chromatin Profile

Chromatin Profile Attributes

Chromatin Profile

Chromatin Profile Attributes

Gene Regulation

Gene Regulation and after

UNIVERSITY VIRGINIA

Chromatin Profile as Evidence

ENCODE Project (2003-)

Describe the functional elements encoded in human DNA

Roadmap Epigenetics Project (REMC, 2008-)

To produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.

Why Study Epigenomics → Gene Expression?

- **Epigenomics:** study of chemical changes in DNA and histones (without altering DNA sequence)
- **Epigenome is dynamic:** can be altered by environmental conditions.

Unlike genetic mutations, epigenomic changes such as histone modifications are potentially reversible → Epigenome drug for cancer cells?

What HMs affect which genes in what cells?

Gene Transcription Prediction Task

Histone Modification Input Data

Histone Modification Input Data

Histone Modification Input Data

DeepChrome

Singh, Lanchantin, Robins & Qi-Bioinformatics 2016

HM1 HM2 НМЗ HM4 HM5

Attentive Chrome

Singh, Lanchantin, Sekhon, & Qi - NeurIPS 2017

Singh, Lanchantin, Sekhon, & Qi - NeurIPS 2017

Singh, Lanchantin, Sekhon, & Qi- NeurIPS 2017

Singh, Lanchantin, Sekhon, & Qi- NeurIPS 2017

Singh, Lanchantin, Sekhon, & Qi - NeurIPS 2017

Singh, Lanchantin, Sekhon, & Qi- NeurIPS 2017

Interpretability by Hierarchical Attention

Input Output **Attention** Park **Mechanism** Gene (1) What positions are important? HM1 DNA G (2) What HMs are important? HM2 DNA 44 Gene

Data Sets

Experimental Setup

- Roadmap Epigenetics Project (REMC)
- Cell-types: 56
- Input (HM): ChIP-Seq Maps / 5 Tier-1 HMs

Histone Mark	Functional Category
H3K27me3	Repressor
H3K36me3	Structural Promoter
H3K4me1	Distal Promoter
H3K4me3	Promoter
H3K9me3	Repressor

- Output (Gene Expression): Discretized RNA-Seq
- Baselines: Support Vector Classifier (SVC) and Random Forest Classifier (RFC)

Training Set	Validation Set	Test Set
6601 Genes	6601 Genes	6600 Genes

Prediction

Bin-Level Visualization

(1) What positions are important?

49

CELL TYPE: GM12878 (Blood Cell)

Validation of Attention Weights (using one extra HM signals)

Table 3: Pearson Correlation values between weights assigned for H_{prom} (active HM) by different visualization techniques and H_{active} read coverage (indicating actual activity near "ON" genes) for predicted "ON" genes across three major cell types.

Viz. Methods	H1-hESC	GM12878	K562
α Map (LSTM- α)	0.8523	0.8827	0.9147
α Map (LSTM- α, β)	0.8995	0.8456	0.9027
Class-based Optimization (CNN)	0.0562	0.1741	0.1116
Saliency Map (CNN)	0.1822	-0.1421	0.2238

Additional signal - H3K27ac (H-Active) from REMC

Average local attention weights of gene=ON correspond well with H-active

Indicating AttentiveChrome is focusing on the correct bin positions

Results: HM level attention

(2) What HMs are important?

➢ An important differentially regulated gene (PAX5) across three blood lineage cell types:
 ➢ H1-hESC (stem cell),
 ➢ GM12878 (blood cell),
 ➢ K562 (leukemia cell).

Trend of its global weights (beta)
Verified through the literature.

52

https://www.deepchrome.net

Output (Y) Labels

	Genes	Gene Expression (RPKM)	Y Labels	
	RUNX1	1.296	0	
	SMAD2	14.902	1	
	МҮС	3.805	0	
	PAX5	15.066	1	
i i i				

Threshold = 10.245 (Median)

Changing Task : Classification \rightarrow Regression

A. Sekon, R. Singh, Y. QiDeepDiff: Deep-learning for predicting Differential gene expression from histone modifications, Bioinformatics 2018

Changing Task : Cell-Specific \rightarrow Cross Cell

DeepDiff: Deep-learning for predicting Differential gene expression from histone modifications

Changing Task : Cell-Specific \rightarrow Cross Cell

Second Task:

ACTGCTACCTATGACGTGATGCATCGTAGCT

Α

ACTGCTACCTATGACGTGATGCATCGTAGCTA x_1 x_2 x_3 x_4

Influence of Long-Range Interactions on Chromatin Profile

Influence of Long-Range Interactions on Chromatin Profile

Genome: Locally a Sequence, Globally a Graph

High-throughput Chromosome Conformation Capture (Hi-C)

contact between two windows

"structural blueprint" indicating interactions that may matter for regulation

ChromeGCN: Combining Sequence and Graph Learning for Chromatin Profile Prediction

(X,A)

ChromeGCN: Combining Sequence and Graph Learning for Chromatin Profile Prediction

Graph Convolutional Networks for Epigenetic Activity Prediction Using Both Sequence and 3D Genome

ChromeGCN: Combining Sequence and Graph Learning for Chromatin Profile Prediction

ChromeGCN - Lanchantin and Qi. ECCB 2020, Bioinformatics 2020

Understanding by Post Analysis

Lanchantin, Singh, Wang & Qi - Pacific Symposium on Biocomputing, 2017

1. Saliency Maps - recommending on CNN kind

- 2. Class Optimization recommending on CNN kind
- 3. Temporal Output Values recommending on RNN kind

Interpreting Sequence Syntax with Class Optimization

Deep Motif Dashboard - Lanchantin, Singh, Wang, Qi. ICLR Workshop Track 2016, PSB 2017

= important nucleotide for prediction

Deep Motif Dashboard - Lanchantin, Singh, Wang, Qi. ICLR Workshop Track 2016, PSB 2017

Interpreting Long Range Interactions with Hi-C Saliency Maps

ChromeGCN - Lanchantin and Qi. Bioinformatics 2020

Local sequence interactions

https://www.deepchrome.net

Summary of tools

Contributions

1. Cohesive framework: we

fuse local sequence features and long range interactions for chromatin profile prediction

2. Accurate: incorporating long range interactions outperforms the baselines

3. Interpretable: we introduce **Hi-C saliency maps** to find important interactions, and **deep motif dashboard** to interpret local features

ATGCTCGATGCTAATACGACTGAGATTACTGAGACTGAGACTCTAGAT

gene expressed

Third Task:

Interaction Prediction

What we have tried: Using Deep Learning to Read the Genome, Epigenome and Proteome

1. Deep Learning module to reflect biological modules

2. Compose modules to reflect biology

3. Open DNN black-box and provide domain explanations

http://deepchrome.net

CNN Positive Class Maximization	QR_UT_Tete
RNN Positive Class Maximization	1144
CNN-RNN Positive Class Maximization	9
Positive Test Sequence	GGGGCCAAGAAGGGAGGGGTCAGGAGCAGGTCAGGCGCAGGTCAGGCGGCGCGCCCCCCCC
CNN Saliency (0.90)	
RNN Saliency (0.96)	
CNN-RNN Saliency (0.99)	
Positive Test Sequence	GGGGCCAAGAAGGGAGGGGTCAGGAGCAGGTCAGGCGCGGCGGCGCGCCGCCCGC
RNN Forward Temporal Outputs RNN Backward Temporal Outputs	
CNN-RNN Forward Temporal Outputs CNN-RNN Backward Temporal Outputs	

Acknowledgements

Ritambhara Singh Now Assistant Professor @Brown

Jack Lanchantin Now @ Facebook Research

Arshdeep Sekhon

Beilun Wang Now Associate Professor @ Southeastern Univ.

Weilin Xu, Now Research Staff @ Intel Labs

UVA Department of Biochemistry and Molecular Genetics: Dr. Mazhar Adli

What we have tried: Using Deep Learning to Read the Genome, Epigenome and Proteome

Third Task:

d gene expressed

ATGCTCGATGCTAATACGACTGAGATTACTGAGACTGAGACTCTAGA

Transfer Learning for Predicting Virus-Host Protein Interactions for Novel Virus Sequences

Jack Lanchantin, Tom Weingarten, Arshdeep Sekhon, Clint Miller, Yanjun Qi / ACM BCB 2021

Proteins: the building blocks of life

oxygen transportation

antibodies

digestive enzymes

Lanchantin, Weingarten, Sekhon, Miller, Qi - ACM-BCM 2021

Structure Determines Function

One primary function: Protein-Protein Interactions (PPIs)

Our Task: To Discover Human-Virus Protein-Protein Interactions

Human-Virus Protein-Protein Interactions

Human-Virus Protein-Protein Interactions

Novel Virus-Human Protein Interaction Prediction from Sequence

UNIVERSITY 99 VIRGINIA

Novel Virus-Human Protein Interaction Prediction from Sequence

- 1. Limited interaction data available
- 2. Interactions are largely determined by structure

Transfer Learning for Sequence-Based Interaction Prediction

Lanchantin, Weingarten, Sekhon, Miller, Qi - ACM BCB 2021

Interaction Prediction

Experimental Setup

• Training Data: HPIDB 3.0 Dataset

- 22,000 positive interactions, 226,000 negative interactions
- 1,100k virus proteins, 20,000 host (human) proteins
- Testing Data:
 - HIV, Ebola interactions from Zhou et al.
 - Our own curated SARS-CoV-2 interactions collected from BioGrid

Protein-Protein Interaction Prediction Results

	H1N1		Ebola		SARS-CoV-2	
Method	AUROC	F1	AUROC	F1	AUROC	F1
SVM (Zhou et al.)	0.886	0.762	0.867	0.760	-	-
Embedding + RF (Yang et al)	-	_	-	-	0.748	0.115
MotifTransformer	0.894	0.819	0.927	0.836	0.726	0.089
MotifTransformer + LM	0.910	0.837	0.943	0.867	0.735	0.095
MotifTransformer + LM + SP	0.926	0.848	0.979	0.895	0.767	0.105
						UNIVERSITY -107 VIRGINIA

Use Cases of Sequence Based Interaction Predictors

2. analyze how mutations affect interactions

Perturbation Analysis: Investigating Mutations

Short Article D614G Spike Mutation Increases SARS CoV-2

Susceptibility to Neutralization

The NEW ENGLAND JOURNAL of MEDICINE

Hornsby ², ⁷, Katayoun Lin ⁹, Ying

Drew Weiss

CLINICAL IMPLICATIONS OF BASIC RESEARCH

Elizabeth G. Phimister, Ph.D., Editor

Emergence of a Highly Fit SARS-CoV-2 Variant

RESEARCH

CORONAVIRUS

SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo

Yixuan J. Hou¹*, Shiho Chiba²*, Peter Halfmann², Camille Ehre³, Makoto Kuroda², Kenneth H. Dinnon III⁴, Sarah R. Leist¹, Alexandra Schäfer¹, Noriko Nakajima⁵, Kenta Takahashi⁵, Rhianna E. Lee³, Teresa M. Mascenik³, Rachel Graham¹, Caitlin E. Edwards¹, Longping V. Tse¹,

Perturbation Analysis

Lanchantin, Weingarten, Sekhon, Miller, Qi - MLCB 2020

Perturbation Analysis

Lanchantin, Weingarten, Sekhon, Miller, Qi - MLCB 2020

Perturbation Analysis

Lanchantin, Weingarten, Sekhon, Miller, Qi - MLCB 2020

Perturbation Analysis: Investigating Mutations

surveillance of mutations among pandemic isolates

Experimental Setup

- 105,528 mutated Spike sequences and their corresponding ACE2 binding affinities from Starr et al. 2020
- Training / Test splits
 - 100 training, 105,428 testing
 - o 1,000 training, 104,528 testing
 - o 10,000 training, 95,528 testing

Perturbation Analysis: Mutated Spike and ACE2 Interactions

Spearman rank correlation between DeepVHPPI binding prediction and dissociation constant

Lanchantin, Weingarten, Sekhon, Miller, Qi - ACM-BCB 2021

Contributions

1. Flexible transfer learning framework for protein-protein interaction prediction

2. Accurate novel virus interaction predictions

3. Interpretable and interactive mutation perturbation analysis

Lanchantin, Weingarten, Sekhon, Miller, Qi - ACM-BCB 2021

Journey Ahead

- Deeply interested in analyzing this group of amazingly complicated and large-scale datasets
- Realized that finding mutual interests is hard
 - Computational impacts
 - Biomedical impacts

- Need help in biology
- Need help in medicine
- Need help in figuring out NIH grant applications