
Semi-Supervised Multi-task Learning 
for Predicting Interactions between 
HIV-1 and Human Proteins

1 Machine Learning Department, NEC Labs America.
2 School of Computer Science, Carnegie Mellon University
3 Google Research, NY

Yanjun Qi1, Oznur Tastan2, Jaime G. Carbonell2, 
Judith Klein-Seetharaman2, Jason Weston3

1/24/20 1ECCB 2010



Importance of Protein Interactions

• Need comprehensive identification of Protein-
Protein Interactions (PPI) 
– To systematically define proteins’ functions
– To decipher molecular mechanisms underlying given 

biological functions
– Essential for diseases studies & drug discoveries

Protein “b”
unknown

Protein “a”
known Interaction

Better understanding of 
function of protein “b”

Protein “b”Protein “a” Interaction

Identify new 
pathways

Detect relationships 
between pathways

Background
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Previous Approaches
• Experimental:

– Direct large scale experimental data
• High false-positive and false-negative rate, 
• Incomplete, with majority remains to be 

discovered, especially for human
• Surprisingly small overlap among different sets

• Computational:
– Combine direct evidence and other implicitly 

related biological information as features
• Example: If two proteins are co-expressed, 

they may interact. 

è Large portion of the PPIs still missing or noisy !

Background
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Computational PPI Prediction through Data Fusion

Background
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Our Aim

Predict novel direct physical interactions 
between HIV-1 and human proteins

Target Problem

Critical for designing strategies to get HIV-1 under control !
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• Causative agent of AIDS
– Destructs the immune system 
– Leads to opportunistic infections and 

malignancies
• Current antiviral therapy prolonged the 

patients’ survival rates
– Not accessible to everyone
– Cannot eradicate HIV  from the body
– Drug resistance  problems

• No vaccine

HIV-1: Human Immunodeficiency Virus-1
Target Problem
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Previous Work: Supervised Classification

• HIV-1 human protein pair is described with a feature 
vector and a class label :

• Given data learn a function that would map feature 
space into  one of the two classes:

• State-of-the-art performance:  Random forest (Tastan 
et al. (PSB 2009))

Each feature summarizes  a biological information

:f X Y®

( , )      {'Interact','Not Interact'}ix y yÎ!

Target Problem
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• Features and reference sets are from paper:  
– Tastan et al. (PSB 2009) 

• 18 features calculated for each HIV-1 , human 
protein pair

10 features specific to HIV-1, human protein pair

8 features of human protein

Target Problem: Features
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q Differential gene expression in HIV 
infected vs uninfected cells  (4)

q Human protein expression in HIV-1 
susceptible tissues (1)

q Similarity of the two proteins in 
terms of (4)
– Cellular location
– Molecular process
– Molecular function
– Sequence

q ELM-ligand feature (1)

q Human PPI interactome 
features (8)
q Similarity of HIV-1 protein to 

human protein’s interaction 
partner (5)

q Topological properties of 
human interaction graph (3)

Target Problem: Features
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• Partial positive labels from NIAID database
– ~2100 protein interaction pairs (extracted from 

literature)
– Not enough evidence supporting reliabilities 

(partial positive)
– Each associated with keywords 

• (e.g. “interacts”, “binds”, “up-regulates”, ....)
• Some strong indication, some weak 

• Positive labels annotated by HIV experts
– 361 possible pairs given to experts
– 158 out of above annotated as interaction 

(positive) 

Target Problem: Data Situation
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• No negative (not interacting) set available
• Highly skewed class distribution 

• Much more non-interacting pairs than interacting pairs

Target Problem: Data Situation

20873
Human 
Proteins

17 HIV 
Proteins

18 features per HIV-Human pair

1/24/20 11ECCB 2010



• Multi-tasking two tasks
– Supervised main PPI classification task
– Semi-supervised auxiliary task with partial labels 

• (1) Classification
• (2) Ranking
• (3) Embedding

• Add auxiliary task as a regularizer on the supervised MLP

Method: Semi-supervised Embedding
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Method: Multi-Tasking with Semi-Supervised Auxiliary Task



• Main task: Supervised 
PPI classification 
• Multiple Layer 

Perceptron (MLP)
• Binary classification 

(interact “1”, not 
interact “-1”)

• Train with stochastic 
gradient descent

• Toward hinge loss 
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Method: Semi-supervised EmbeddingMain: (0) Supervised PPI Classification (MLP)

INPUT

Genomic Info

Network Info

Sequence Info

Layer 1

Layer 2

Layer 3

OUTPUT : f()

•Assuming labeled data (xi , yi ), i = 1, ..., L



• Auxiliary task: Pseudo-
Supervised classification 

• MLP shares layers with 
main task 

• Binary classification
• partial positive “1” 
• not interact “-1”

• Toward hinge loss with 
pseudo-labels  
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Method: Semi-supervised EmbeddingAuxiliary: (1) Classification with Partial Labels (SMLC)

•Assuming partial Labeled data (xi , y’i), i = L+1 , ..., L + U

INPUT

Genomic Info

Network Info

Sequence Info

OUTPUT’ : g()

Layer 3’

Layer 1

Layer 2

Layer 3

OUTPUT: f()



• Auxiliary task: Pseudo-
Supervised ranking
• MLP shares the same 

network as main task 
• Preference ranking

• Rank “partial positive” 
more likely than 
“negative” 

• Toward margin rank loss 
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Method: Semi-supervised EmbeddingAuxiliary: (2) Ranking with Partial Labels (SMLR)

OUTPUT  f()

INPUT

Margin Ranking 
Space

Layer 1

Layer 2

Layer 3

Genomic Info

Network Info

Sequence Info

P the set of partial positives and N the set of negative examples



• Embedding: Given data x1, ..., xP , find an embedding 
function f(xi) by minimizing pairwise distance margin loss 

– W matrix should be supplied in advance and specify the 
similarity between examples xi and  xj

• Motivation: embedding could uncover hidden cluster 
structure within the data based on partial examples’ 
similarities to the remaining examples

• We use partial labels to build matrix W for embedding
– Wij = 1 if both examples from partial positive set
– Wij = 0 if one partial positive example and the other a 

negative example

Method: Embedding
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Auxiliary: (3) Embedding with Partial Labels (SMLE)



Method: Semi-supervised Embedding
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Auxiliary: (3) Embedding with Partial Labels (SMLE)

üAuxiliary task: Pseudo-
Embedding

• MLP shares the same network 
as main task 

• Embedding adds an extra 
distance layer on output

• Motivation: embedding could 
improve accuracy by helping 
data clusters get similar labels

• The whole network optimize 
toward the loss 

OUTPUT f()

INPUT

Embedding 
Space

Layer 1

Layer 2

Layer 3

Genomic Info

Network Info

Sequence Info



Method: Semi-Multi-Embed Algorithm (SMLE case)

Input:
• Labeled data (xi , yi ), i = 1, ..., L
• Partial Labeled data xi , i = L+1 , ..., L + P

Repeat:
• Pick a random labeled example (xi , yi )
• Make a gradient step to optimize l( f(xi ), yi )

• Pick a random partially labeled example xp
• Pick another random example xq where Wpq = 1
• Make a gradient step to optimize λL( f(xp ), g(xq ), 1 )

• Pick a random partially labeled example xm
• Pick another random example xn where Wmn = 0
• Make a gradient step to optimize λL( f(xm ), g(xn ), 0 )

Until stopping criteria is met
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• The Mean Average Precision (MAP)
– Mean of the average precisions where each average precision is 

calculated when recall increases

• Precision-Recall breakpoint (PRB)
– Value where precision is equal to recall 

• Area Under the Receiver Operating Curve (AUC):

FP rate 

TP
 ra

te
 AUC

ROC curve • Partial AUC scores :
Area under the curve  
until reaching N false positives

Evaluation: Performance Measures
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• 20 times of randomly repeated 5 folds cross validation
• Compare: SMLC, SMLR, SMLE, MLP and RF 

– Torch for SMLC, SMLR, SMLE, and MLP
– RF Berkely package for RF 

Evaluation: Performance Comparison
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METHOD AUC 50 MAP PRB AUC

SMLC 0.277 0.263 0.312 0.905

SMLR 0.31 0.268 0.311 0.919

SMLE 0.309 0.277 0.326 0.908

RF 0.199 0.135 0.18 0.893

RF-P 0.23 0.213 0.281 0.896

MLP 0.204 0.197 0.257 0.859

MLP-P 0.229 0.21 0.282 0.893



Evaluation: Validation
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• Statistics of overlaps between top predicted 
human partners to those found in
– (i)(Ott, 2008) virion screen list,
– (ii) Combined 4 siRNA screens (Brass et al., 2008; König et al., 2008; 

Yeung et al., 2009; Zhou et al., 2008) 

Predicted Interactions 2434

Interaction Confirmed by Partial Positive 223

Novel Interactions 2172

Human Gene in Predicted Interactions 721

Confirmed with Virion (316 genes) 61

Combined Four siRNA (1049 genes) 72

All experts labels / partial labels / top predicted interactions are shared online !
http://www.cs.cmu.edu/~qyj/HIVsemi

http://www.cs.cmu.edu/~qyj/HIVsemi


Conclusion

• Semi-supervised multitasking is promising for 
HIV-Human PPI prediction task 

• Easily extendable for incorporating other 
auxiliary information, such as large-scale noisy 
experimental PPI evidence

• Easily extendable for other PPI tasks, such as 
PPI predictions in yeast or human

1/24/20 22ECCB 2010



Thanks ! 

1/24/20 23ECCB 2010

All experts labels / partial labels / top predicted interactions are shared online !
http://www.cs.cmu.edu/~qyj/HIVsemi
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