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This Year’s Tutorial Talk: jointnets tools for Identifying Related
Dependency Graphs from Heterogeneous Samples

1. Graphical Models to 
reflect interactions among 
important variables 

2. Consider Sample 
Heterogeneity to reflect 
network under many contexts  

jointnets.org 

•  Joint graph discovery 
from heterogeneous 
samples 
•  Fast and scalable 

graph estimators  
•  Parallelizable 

method (GPU, 
multi-threading)   

•  Sharp convergence 
rate (sharp error 
bounds) 
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Design Motivations: Our Research Philosophy in jointnets

Machine learning for Biomedicine 
Our Research Philosophy: 

Be Scalable 

Be Explainable 

Well-engineered 
software systems 

Be Accurate 

Able to provide and 
model biological 
explanations  

Be Trustworthy 
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Time line of tools in jointnets.org

2015 2016

SIMULE:

2017 2018

Timeline	of	
JointNets

WSIMULE:

2019

DIFFEE:	
kDIFFNet:	

Add 
Knowledge in 
DIFFEE

JEEK:

http://jointnets.org/

8 / 120



Outline
1 Tasks in Joint Structure Learning from Heterogeneous Samples

http://jointnets.org
How to Measure Being Accurate and/or Scalable?
Correlation or Conditional Dependency?
From Heterogeneous Samples plus Knowledge beyond Samples

2 Joint Sparse GGMs: Methods and Variations
Basics: Sparse Gaussian Graphical Model (sGGM)
Method: Joint Graphical Lasso (JGL)
Method: SIMULE: Shared and Individual Parts of MULtiple sGGM Explicitly
Method Variation: NSIMULE: Gaussian to nonparanormal
Method Variation: WSIMULE: Adding Extra knowledge
Large Scale Variation of WSIMULE: JEEK
Large Scale Variation of Differential sGGM: DIFFEE

3 Backup Slides
Summary of Other Research: http://deepchrome.org
Summary of Other Research: http://trustworthymachinelearning.org
More about Convergence Rates:
Markov Random Field:

9 / 120



How to compare different estimators?

Two major properties: [Accuracy] and [Speed]

Accuracy:

Statistical Convergence rate / error bounds: corresponding to estimation error or
approximation error / distance between your estimated parameter and the true parameter .

Speed:

Computational complexity: How fast and efficient your algorithm is with respect to certain
parameters, e.g., n and p.
Optimization convergence rate : How fast each optimization step moves the estimated
parameter, such as linear or quadratic.
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Overview Figure of the three major theoretical rates:

Stop Point 

Optimization 
Convergence Rate 

Time Complexity 

Statistical 
Convergence 
Rate 

Truth 
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Overview Figure of the three rates: Computational Complexity

Stop Point 

Optimization 
Convergence Rate 

Running Time (Computational Complexity) 

Statistical 
Convergence 
Rate 
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Computational Complexity: algorithmic cost

The amount of required resources: e.g. running time, memory cost .

Big O notation: asymptotically tight bound on the running cost.

For machine learning tasks, mainly relate to n and p
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Computational Complexity:

Some well-known cases:

Matrix Multiplication: e.g., wTX costs O(np2)
Matrix inversion O(p3)
SVD O(p3)
soft-thresholding of matrix O(p2)

How to calculate if estimating parameter θ via iterative optimization?

Number of Iteration (depending on optimization convergence rate) × Computational
complexity of each Iteration.
e.g., O(Tp3) if every iteration uses SVD.
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Some Notations

X The sample matrix

Σ The covariance matrix.

Ω The precision matrix.

p The number of features (input variables).

n The number of samples in the data matrix.

s The number of non-zero entries in the precision matrix.
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Background: Graph about p Variable

Many applications need to know interactions among
entities:

Brain functional connectivity
Gene Interactions, Transcription Factor co-bindings,
...

Why to study the variable graphs?

Understanding
Diagnosis, e.g., marker
Treatment, e.g., drug development.
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Background: What Type of Edges? Correlation to Conditional dependency
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How to Infer Conditional dependency Graph? Data-driven approach

Observed samples =⇒ Variable Graph

n observed data samples

Each sample is a snapshot of all the entities
(variables).
Each sample has measurements of p
features/entities /variables.

when n >> p (low-dimensional, n data samples
enough → a well estimated conditional
dependency graph about p nodes ).

When p > n (high-dimensional), need novel and
theoretically sound approaches
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Background: Variable graphs from Heterogeneous Samples

Most applications include heterogeneous samples.
For example:

Totally ntot data samples
From K different but related contexts, each having ni data samples, ntot =

∑
ni
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Background: Variable graphs from Heterogeneous Data
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Task I: Learning multiple related graphs

Learning multiple related graphs

E.g., TF-TF interactions

Three graphs are similar
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Task II: Integrating additional knowledge

Integrating known knowledge in Learning multiple related graphs
E.g., known knowledge of Brain Connection E.g., known gene pathway knowledge
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Task III: Learning sparse changes between two graphs

A very interesting task:

Find differences in the brains of people with diseases, e.g. Autism, Alzheimer’s
Use for understanding
Use for diagnosis
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Notations

X (i) i-th Data matrix.

Σ(i) i-th Covariance matrix.

Ω(i) i-th Inverse of covariance matrix (precision matrix).

p The total number of feature variables.

ntot The total number of samples.

X tot the concatenation of all Data matrices.

Σtot the concatenation of all Covariance matrices.

Ωtot the concatenation of all Inverse of covariance matrices (precision matrices).

W tot
I (W

(1)
I ,W

(2)
I , . . . ,W

(K)
I )

W tot
S (WS ,WS , . . . ,WS)

K The total number of contexts.

28 / 120



Design Motivations: Our Research Philosophy in jointnets

Machine learning for Biomedicine 
Our Research Philosophy: 

Be Scalable 

Be Explainable 

Well-engineered 
software systems 

Be Accurate 

Able to provide and 
model biological 
explanations  

Be Trustworthy 
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Computational Challenges: More Num of features (p) to consider

Yeast gene: 6K
↓

Human gene: 30K

Words interaction, millions of words
(p > 1, 000, 000)
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Computational Challenges: More num of tasks (K ) to consider
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Why do we care computational complexity?

Estimators JGL WSIMULE

Computational complexity O(Kp3) / iter O(K 4p5)

Bottle neck SVD Linear programming

When K = 91, p = 30K JGL WSIMULE

Time 3.5 days / iter years
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Computational Challenges and Theoretical Soundness

For large-scale cases, we need to design
O(p2) methods, and consider
parallelization computer architectures!!!

At the same time, no sacrifices of the
accuracy, e.g., same level of ||θ̂ − θ∗||;
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Markov Random Field 

Nonparanormal 
Graphical Model  

Gaussian Graphical 
Model  

superset 

superset 

Sparse Gaussian 
Graphical Model  

Sparse 
Assumption Lasso 

Gaussian Case  
Partial 

Correlation 

Probability 
Inference 

Structure 
Learning 

Graphical Model  

Conditional 
Independence 



Basics: Gaussian Case

In the Gaussian case, the conditional dependence and partial correlation structure are
equivalent.

This pairwise relationship can be naturally described via a graph G = (V ,E ).

Undirected Gaussian Graphical Model, Undirected nonparanormal Graphical model,
Markov random field;
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Two main tasks for Graphical Models:

Probability Inference: estimate joint probability, marginal probability, and conditional
probability.

Structure learning: Give dataset X, learn the Graph structure from X (i.e., learn the
edge patterns between variables).
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Background: Sparse Gaussian Graphical Model (sGGM)

X ∼ N(µ,Σ).

Covariance matrix Σ can be calculated from X

Precision matrix Ω is the inverse of covariance matrix Σ

The sparsity pattern of Ω captures the conditional dependency pattern among variables.

For example,
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Background: Graphical Lasso for sGGM Structure Learning

Traditionally, we estimate sGGM from samples (of a single task) using an `1 penalized
MLE formulation.

Graphical Lasso
[Friedman et al.(2008)Friedman, Hastie, and Tibshirani]

argmin
Ω
− ln det(Ω) + tr

(
ΩΣ̂
)

+ λn||Ω||1 (2.1)
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Four kinds of Estimators for Estimating sGGM from Data
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Task I: Joint structure learning of Related Graph Structures from Multiple
Related Datasets

Normal Brain 
Tissue 
 

Lung Cancer Brain Cancer 

Expression 
Data  

(1) Network 
Inference 

(2) 

Multi- 
Context  

(3) 
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JGL: Joint Graphical Lasso (JGL) for Jointly Estimating Multiple sGGMs

Most previous studies add a second penalty function P() into the penalized likelihood
formulation.

P(Ω(1),Ω(2), . . . ,Ω(K)) captures a certain assumption about relationships between
multiple graphs.

For example, fused norm to push graphs similar:
P(Ω(1),Ω(2), . . . ,Ω(K)) =

∑
i>j
||Ω(i) − Ω(j)||1.

Joint Graphical Lasso (JGL) [Danaher et al.(2013)Danaher, Wang, and Witten]

argmin
Ω(i)

−
∑
i

(ln det(Ω(i)) + tr
(

Ω(i)Σ̂(i)
)

)

+ λ1

∑
i

||Ω(i)||1 + λ2P(Ω(1),Ω(2), . . . ,Ω(K))
(2.2)
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Multi-task sGGMs estimators through JGL framework:

Group Lasso[Danaher et al.(2013)Danaher, Wang, and Witten]

P(Ω(1),Ω(2), . . . ,Ω(K)) = ||Ω(1),Ω(2), . . . ,Ω(K)||G,2.

SIMONE[Chiquet et al.(2011)Chiquet, Grandvalet, and Ambroise]

P(Ω(1),Ω(2), . . . ,Ω(K)) =
∑
i 6=j

((
T∑

k=1

(Ω
(k)
ij )2

+))
1
2 + ((

K∑
k=1

(−Ω
(k)
ij )2

+))
1
2 .

Node JGL[Mohan et al.(2013)Mohan, London, Fazel, Lee, and Witten]

P(Ω(1),Ω(2), . . . ,Ω(K)) =
∑

ij ,i>j
RCON(Ω(i) − Ω(j)).
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Explicit Estimation?

Main Task: How to estimate / learn shared (ΩS) and task-specific (Ω
(i)
I ) graph structures

among feature variables from multiple different but related datasets about the same set of
features.
Get to know both: House keeping interactions and Context-specific networks
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Method: ”SIMULE” Formulation

We model each task’s precision matrix Ω(i) as a sum of task-specific Ω
(i)
I and task-shared ΩS :

Ω(i) = Ω
(i)
I + ΩS (2.3)
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SIMULE method: Overview Figure
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Goals

SIMULE model aims to have the following properties:

It estimates the shared and task-specific graph patterns explicitly and simultaneously.

It can control the estimation of shared versus the task-specific patterns.

It provides a strong theoretical guarantee.

It achieves good empirical performance.
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Why JGL Estimators Can’t Get ”SIMULE”

JGL estimators are mostly solved by ADMM based optimization.

With ”SIMULE” formulation, difficult to separate the optimization into independent
ADMM sub-procedures. Because,

The derivative of ”SIMULE” in the JGL, i.e., gradient of ln det(Ω
(i)
I + ΩS) gets inverse of

matrix summation.
Inverse of the summation of two matrices makes the optimization not separable.

Therefore, we use an alternative formulation for sGGM: A constrained `1 minimization
formulation.

CLIME estimator [Cai et al.(2011)Cai, Liu, and Luo]

argmin
Ω
||Ω||1

Subject to: ||Σ̂Ω− I ||∞ ≤ λn
(2.4)
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SIMULE: to Infer Shared and Individual Parts of MULtiple sGGM Explicitly

By using a constrained `1 minimization formulation, estimator SIMULE can jointly learn
multiple graphs from multiple different but related sample datasets (on the same set of
feature variables).

Optimization: Column-wise parallelizable;

SIMULE

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K)
I , Ω̂S = argmin

Ω
(i)
I ,ΩS

∑
i

||Ω(i)
I ||1 + εK ||ΩS ||1 (2.5)

Subject to: ||Σ̂(i)(Ω
(i)
I + ΩS)− I ||∞ ≤ λn, i = 1, . . . ,K
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Theoretical Results: Statistical Convergence Rate

Comparing SIMULE v. CLIME w.r.t the statistical convergence rate for estimating K
graphs:

Multi-task: K Single-task:

O( log(Kp)
ntot

)
∑
i
O( log p

ni
))

By assuming ni = ntot
K :

We can conclude that log(Kp)
ntot

< K log p
ntot

This indicates that the multi-task estimator is better!!!
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Results on Two Real-World Datasets: Number of Matched Edges versus
the Existing Domain Databases

Two real world datasets:
(1) Gene expressions of samples in 2 different cell types
(2) Transcription Factors’ ENCODE ChIP-seq measurements across 3 different cell lines

Validation by counting the overlapped interactions according to the existing bio-databases
(MInact). figure
Our methods obtain the most matches compared to the state-of-the-art baselines.
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Model Variation: NSIMULE for jointly estimating multiple nonparanormal
Graphical Models

The Gaussian assumption of our model can extend easily to a more general distribution
family: nonparanormal.

The only necessary change: by simply replacing the sample covariance matrices Σ̂(i) in
Equation 2.5 into the kendal’s tau correlation matrices Ŝ(i).

We denote this estimator as nonparanormal SIMULE (NSIMULE).
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Task II: Integrating additional knowledge

Many additional knowledge exist beyond samples when Joint structure learning;
E.g., known prior knowledge about Brain Connection
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Solution: Using Knowledge as Weight in Regularization (KW-norm)

Integrating additional knowledge through a novel regularization function R(·)

KW-norm

R({Ω(i)}) =
K∑
i=1

||W (i)
I ◦ Ω

(i)
I ||1 +

K∑
i=1

||WS ◦ ΩS ||1 (2.6)

Ω(i) = Ω
(i)
I + ΩS

{W (i)
I }: weights describing knowledge of each individual graph.

WS : weights describing knowledge of the shared graph.
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Solution: Using Knowledge as Weight in Regularization (KW-norm)

Use tot notation

KW-norm

R(Ωtot) = ||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||1 (2.7)

W tot
I : weights describing knowledge of each individual graph.

W tot
S : weights describing knowledge of the shared graph.

No need to design knowledge-specific optimization

KW-norm is flexible.
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Example I: KW-norm representing the edge-level knowledge

e.g., Spatial distance among brain regions;
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Example II: KW-norm describing the node-level knowledge

e.g., X2 is a known hub node;
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WSIMULE: A weighted SIMULE estimator

SIMULE

Ω̂
(1)
I , Ω̂

(2)
I , . . . , Ω̂

(K)
I , Ω̂S = argmin

Ω
(i)
I ,ΩS

∑
i

||Ω(i)
I ||1 + εK ||ΩS ||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I ||∞ ≤ λn, i = 1, . . . ,K

ADD W
(i)
I ,WS ⇓

W-SIMULE

Ω̂
(1)
I , ..., Ω̂

(K)
I , Ω̂S =

∑
i

argmin
Ω

(i)
I ,ΩS

||W (i)
I ◦ Ω

(i)
I ||1 + K ||WS ◦ ΩS ||1

Subject to: ||Σ(i)(Ω
(i)
I + ΩS)− I ||∞ ≤ λ, i ∈ 1, ...,K

(2.8)
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Background: Elementary Estimator (EE) for joint sGGMs tasks

Previous studies:

Elementary Estimator:
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JEEK: Combine EE and KW-norm

Elementary Estimator

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn
(2.9)

+

KW-norm

R(Ωtot) = ||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||1 (2.10)
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JEEK Method: Joint Elementary Estimator incorporating additional
Knowledge (JEEK)

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞

JEEK kw-norm Ωtot inv [Tv (Σ̂tot)] kw-dual

JEEK

argmin
Ωtot

I ,Ωtot
S

||W tot
I ◦ Ωtot

I ||1 + ||W tot
S ◦ Ωtot

S ||

?? Subject to: || 1

W tot
I

◦ (Ωtot − inv(Tv (Σ̂tot)))||∞ ≤ λn

|| 1

W tot
S

◦ (Ωtot − inv(Tv (Σ̂tot)))||∞ ≤ λn

Ωtot = Ωtot
S + Ωtot

I

(2.11)
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JEEK – Solution

Fast and Scalable solution1 – p2 small linear programming subproblems with only K + 1
variables:

argmin
ai ,b

∑
i

|wiai |+ K |wsb|

Subject to: |ai + b − ci | ≤
λn

min(wi ,ws)
,

i = 1, . . . ,K

(2.12)

1ai := Ω
(i)
I j,k

(the {j , k}-th entry of Ω(i))
b := ΩS j,k

ci = [Tv (Σ̂(i))]−1
j,k .

W
(i)
j,k = wi and W S

j,k = ws .
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Why JEEK is better

Rich and flexible for integrating additional knowledge
e.g., spatial, anatomy, hub, pathway, location, known edges;

Parallelizable optimization with small sub-problems.
Theoretical guaranteed
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Theoretical Results: Sharp convergence rate

Sharp convergence rate as the state-of-art

||Ω̂tot − Ωtot∗||F ≤ 4
√
ki + ksλn

max(||W tot
I ◦ (Ω̂tot − Ωtot∗)||∞, ||W tot

S ◦ (Ω̂tot − Ωtot∗||∞) ≤ 2λn

||W tot
I ◦ (Ω̂tot

I − Ωtot
I
∗
)||1 + ||W tot

S ◦ (Ω̂tot
S − Ωtot

S
∗
)||1 ≤ 8(ki + ks)λn

(2.13)

Where a, c , κ1 and κ2 are constants

||Ω̂tot−Ωtot∗||F

≤
16κ1amax

j,k
(W tot

I j,k ,W
tot
S j,k)

κ2

√
(ki + ks) log(Kp)

ntot

(2.14)
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Empirical Results on Multiple Synthetic Datasets
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(c)Time vs. p-[perturb,K=2,n=p/2]

JEEK
W-SIMULE
JGL-perturb

JEEK outperforms the speed of the state-of arts significantly (∼ 5000× faster);

JEEK obtains better AUC as the state-of-the-art;

JEEK obtains better AUC than JEEK-NK (no additional knowledge).
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Task III: To Learn Differential Network from two Datasets

Focus: How to directly estimate / learn Differential Network (∆) from Two datasets (Xc ,
Xd) about the same set of features in a large scale.

Sparsity Assumption:

Estimating the Difference by separately Learning Two Graphs from two datasets has
Limitations

If estimating two graphs separately, we need to enforce sparsity assumption on both
graphs

However, in some real-world applications, Gc ,Gd are not sparse.
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Direct modeling the differential networks I: Fused JointGLasso

Fused GLasso

By adding a regularization to enforce the sparsity of ∆ = Ωc − Ωd , we have the following
formulation:

argmin
Ωc ,Ωd�0,∆

L(Ωc) + L(Ωd)λn(||Ωc ||1 + ||Ωd ||1) + λ2||∆||1 (2.15)

The Fused Lasso assumes Ωcase ,Ωcontrol ,∆. However, many real world applications, like brain
imaging data, only assume the differential network ∆ is sparse.
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Direct modeling the differential networks II: Differential CLIME

A recent study proposes the following model, which only assume the sparsity of ∆.

Differential CLIME

argmin
∆

||∆||1

Subject to: ||Σ̂c∆Σ̂d − (Σ̂c − Σ̂d)||∞ ≤ λn
(2.16)

However, this method is solved by a linear programming. It has p2 variables in this method.
Therefore, the time complexity is at least O(p8). In practice, it takes more than 2 days to
finish running the method when p = 120.
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Direct modeling the differential networks III: Density Ratio

The above methods all make the Gaussian assumption. This method relaxes the model to the
exponential family distribution.

Density Ratio

pc(x , θc)

pd(x , θd)
∝ exp(

∑
t

∆t ft(x)) (2.17)

Here ∆t encodes the difference between two Networks for factor ft .

Density Ratio

r(x ; θ) =
1

N(θ)
exp(

∑
t

∆t ft(x)) (2.18)

Here ∆t encodes the difference between two Networks for factor ft . N(θ) is a normalization
term.
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Direct modeling the differential networks III: Density Ratio

Density Ratio for Markov Random Field

p̂(x) = pd(x)r(x ; θ)

KL[pc ||p̂] = Const.−
∫

pc(x) log r(x ; θ)dx .
(2.19)
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DIFFEE: Large Scale Differential sGGM

Two cases : d (disease) & c (control)

argmin
θ
||θ||1

Subject to:

||θ − B∗(φ̂)||∞ ≤ λn

(2.20) ∆ = Ωd − Ωc

=⇒

argmin
∆
||∆||1

Subject to:

||∆− B∗(Σ̂d , Σ̂c)||∞ ≤ λn

(2.21)
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DIFFEE: Large Scale Differential sGGM via EE

Elementary Estimator (EE)

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn
(2.22)

EE R(·) θ θ̂n R∗(·)
EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞
DIFFEE || · ||1 ∆

(
[Tv (Σ̂d)]−1 − [Tv (Σ̂c)]−1

)
|| · ||∞

DIFFEE

argmin
∆

||∆||1

Subject to: ||∆−
(

[Tv (Σ̂d)]−1 − [Tv (Σ̂c)]−1
)
||∞ ≤ λn

(2.23)
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DIFFEE: Optimization Solution

Close form
∆̂ = Sλn([Tv (Σ̂d)]−1 − [Tv (Σ̂c)]−1) (2.24)

[Sλ(A)]ij = sign(Aij) max(|Aij | − λ, 0) (2.25)

GPU-parallelizable
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Computational Complexity of DIFFEE:

It has closed-form solution.

It is faster than the previous studies:

DIFFEE FusedGLasso
Density
Ratio

Diff-CLIME

O(p3) O(T ∗ p3) O((nc + p2)3) O(p8)

O(p2) to tune different λn

Theoretical guaranteed
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Theoretical Results: Statistical Convergence Rate

error bound: ||∆∗ − ∆̂||
DIFFEE achieves similar error bound as the previous studies.

DIFFEE FusedGLasso
Density
Ratio

Diff-CLIME

log p
min(nc ,nd ) N/A log p

min(nc ,nd )
log p

min(nc ,nd )
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Empirical Results on fMRI Datasets: the Classification Accuracy

(1) ABIDE dataset

(2) Train the differential network and use it as the parameter of a LDA classifier

Method DIFFEE FusedGLasso Diff-CLIME

Accuracy (%) 57.58% 56.90% 53.79%
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Sparse Gaussian 
Graphical Model 

Graphical Model 

Estimators of sGGM 

Multi-task Learning 

Multi-task sGGMs 

Estimators of Multi-
task sGGMs 

Joint Graphical Lasso 

Indirect learning of 
commonalities and differences 

direct learning of 
commonalities and differences 

Only learning of 
difference graph 

•  SIMULE  
•  NSIMULE  
•  WSIMULE  
•  JEEK  

•  Fused-GLasso 
•  DiffCLIME 
•  DensityRatio 
•  DIFFEE 



Recap: Time line of tools jointnets.org

2015 2016

SIMULE:

2017 2018

Timeline	of	
JointNets

WSIMULE:

2019

DIFFEE:	
kDIFFNet:	

Add 
Knowledge in 
DIFFEE

JEEK:

http://jointnets.org/
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Related Publications:

JEEK

A Fast and Scalable Joint Estimator for Integrating Additional Knowledge

in Learning Multiple Related Sparse Gaussian Graphical Models, B Wang, A
Sekhon, Y Qi, ICML 2018

DIFFEE

Fast and Scalable Learning of Sparse Changes in High-Dimensional Gaussian

Graphical Model Structure, B Wang, A Sekhon, Y Qi, AISTATS 2018

SIMULE, NSIMULE and W-SIMULE

A constrained L1 minimization approach for estimating multiple sparse

Gaussian or nonparanormal graphical models, B Wang, R Singh, Y Qi, Machine
Learning 106 (9-10), 1381-1417, 2016
A Constrained, Weighted-L1 Minimization Approach for Joint Discovery of

Heterogeneous Neural Connectivity Graphs, C Singh, B Wang, Y Qi, Advances in
Modeling and Learning Interactions from Complex Data, NeurIPS 2017 Workshop
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R Package is Available !!!

The project website: http://jointnets.org/

R package ”simule”:
install.packages("simule")

demo(simule) !

R package ”diffee”:
install.packages("diffee")

demo(diffee) !

R package ”jeek”:
install.packages("jeek")

demo(jeek) !

A complete package ”jointNet” in CRAN.
install.packages(’JointNets’, dependencies=TRUE)

Including all above tools and more variations, plus network visualization, synthetic data
simulation, graph evaluation and downstream classification;
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Recap: Our research philosophy

Machine learning for Biomedicine 
Our Research Philosophy:

Be Scalable

Be Explainable

Well-engineered 
software systems

Be Accurate

Able to provide and 
model biological 
explanations

Be Trustworthy
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Overview of My Team’s Three Research Topics

1. Fast and Scalable Learning 
Algorithms to Extract Related 
Graphs from Samples

- =

2. Making Explainable Deep 
Learning for Biomedicine

3. Making Deep Learning 
trustworthy

f1 ( . )
f2 ( . )
f3 ( . )
f4 ( . )
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Biology in One Slide?

DNA RNA PROTEIN ORGANISMCELL

TranscriptionTranslation

Disease
CATGACTG
CATGCCTG

Genetic	Variant
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Big Data of Bio-Medicine

Genomics 
2-40 EB/year

Twitter 
1-17 PB/year

Astronomy
1 EB/year

YouTube
1-2 EB/year

Adapted from Stephens ZD et al 
PLOS Biol 2015
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Last Year’s Tutorial Talk Covered: deepChrome tools

Disease
CATGACTG
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Last Year’s Tutorial Talk Covered: deepChrome tools

2012	-
2015 2016

Multitask	
Deep	Protein	
sequence	
Tagging	
(PlosO 12)

2017 2018

Timeline	of	
deepchrome
our	tools	

MUST-CNN	
(AAAI16)

2019

DeepChrome
(Bioinf 16)

DeepDiffChrome
(Bioinf 18)

DeepMotif
(PSB17)

GakCo-SVM	
(ECML17)

MemNet
(ICLR	w18)

http://deepchrome.org/

Transfer	
String	
Kernel	
(TCBB15)

Attentive	
Chrome	
(NeurIPS17)

PrototypeNet
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Time line of our tools via deepchrome.org

2012	-	
2015	 2016	

Multitask	
Deep	Protein	
sequence	
Tagging	
(PlosO	12)	

2017	 2018	

Timeline of 
deepchrome 
our tools  

MUST-CNN	
(AAAI16)	

2019	

DeepChrome	
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Transfer	
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Time line of our tools via trustworthymachinelearning.org

2015 2016

Evade	via	
Evolution	
(NDSS16)	

2017 2018

Timeline	of	
our	tools

DeepCloak	
(ICLR	w17)

2019

Adversarial-
Playground	
(VizSec17)

DeepWordBug
(DeepSecure
wkp18)

Feature	
Squeezing	
(NDSS18)

Topology	
Theory	of	
Adversarial	
Examples	
(ICLR	w17)

MCTSBug

http://trustworthymachinelearning.org/
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Overview Figure of the three rates: Statistical Convergence Rate

Stop Point 
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Statistical Convergence Rate: error bounds

Suppose the model parameter you need to estimate is θ, the truth is θ∗

‖ θ − θ∗ ‖ or R(θ − θ∗). R] are mostly certain norm functions.

When high-dimensional (p > n), many sparse estimators’ error bounds relate to log p
n .
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Overview Figure of the three rates: Optimization Convergence Rate
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Optimization Convergence Rate: optimization speed

Linear, e.g. gradient descent, ADMM

Higher order, e.g. quadratic

Closed form solution, e.g. vanilla linear regression solution

A rough comparison of speed: closed form ≥ Higher order ≥ linear;
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Markov Random Field

Markov Random Field

Given an undirected graph G = (V ,E ), a set of random variables X = (Xv )v∈V indexed by V
form a Markov random field with respect to G if they satisfy the local Markov property:
A variable is conditionally independent of all other variables given its neighbors:
Xv ⊥⊥ XV \N(v)|XN(v)

This property is stronger than the pairwise Markov property:

pairwise Markov property

Any two non-adjacent variables are conditionally independent given all other variables:
Xu ⊥⊥ Xv | XV \{u,v} if {u, v} /∈ E
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Clique factorization

If this joint density can be factorized over the cliques of G :

p(X = x) =
∏

C∈cl(G)

φC (xC )

then X forms a Markov random field with respect to G . Here cl(G ) is the set of cliques in G .
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Log-linear Model

Any Markov random field can be written as log-linear model with feature functions fk such
that the full-joint distribution can be written as:

P(X = x) =
1

Z
exp

(∑
k

w>k fk(X )

)

. Notice that the reverse doesn’t hold.
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Example I: Pairwise Model

Pairwise Model

P(X = x) =
1

Z (Θ)
exp

∑
s∈V

θ>s x
2
s +

∑
(s,t)∈E

θ>stxsxt


.

Examples:

Gaussian Graphical Model

Ising Model

These two models have good estimators to infer the MRF. Generally, estimate Θ is difficult.
Since it involves computing Z (Θ) or its derivatives.
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Example I: Pairwise Model – Gaussian Case

Gaussian Case

f (x1, . . . , xk) =
exp

(
−1

2 (x− µ)TΣ−1(x− µ)
)√

(2π)k |Σ|
.

Solution:

lnL(x̄ ,Ω) ∝ ln det(Ω)− tr

(
Ω

1

n

n∑
i=1

(x̄ − µ)(x̄ − µ)T

)
(3.1)

= ln det(Ω)− tr
(

ΩŜ
)

(3.2)

where Ŝ is the sample covariance matrix.

Ising Case

For the Ising model, we use generalized covariance matrix to avoid the normalization term.
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Example II: Non-pairwise model – Nonparanormal Graphical Model

Are there any non-pairwise model which is easy to estimate?

Nonparanormal Graphical Model

P(X = x) =
1

Z
exp

(
−1

2
(f (x)− µ)TΣ−1(f (x)− µ)

)
.

where f (X ) = (f1(X1), f2(X2), . . . fp(Xp)) and each fi is a univariate monotone function.
f (X ) ∼ N(µ,Σ).
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Elementary Estimator (EE): Step I – Backward mapping

Backward mapping B∗(φ̂) of the parameter (Solution of Vanilla Maximum Likelihood
Estimator (MLE))

Vanilla MLE: argmax
θ
L(θ)

Already close to true parameter
But without assumptions e.g., sparse
For instance, linear regression solution (XTX )−1XTY
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Elementary Estimator: Step II – Optimization formulation

Elementary Estimator (EE)

argmin
θ
R(θ)

Subject to: R∗(θ − B∗(φ̂)) ≤ λn
(3.3)

Let R(·) =‖ · ‖1 ⇓

argmin
θ
||θ||1

Subject to: ||θ − B∗(φ̂)||∞ ≤ λn
(3.4)

Easy to prove the sharp convergence rate when R and B∗ satisfy certain conditions.
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EE-Benefit: Fast and scalable solution

A soft-thresholding operator (closed form)
Closed form & O(p2)
Easy to parallelize in GPU

θ̂ = Sλn(B∗(φ̂))

[Sλ(A)]ij = sign(Aij) max(|Aij | − λ, 0) (3.5)

Element-wise
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EE-GM: Elementary Estimator for sGGM

Vanilla MLE: argmin
Ω
− log(det(Ω))+ < Ω,Σ >

Backward mapping of Ω is Σ−1

Not invertible when p ≥ n

Need apporximated backward mapping

proxy backward mapping θ̂n ≈ B∗(φ̂)

In sGGM, θ̂n = [Tv (Σ̂)]−1
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EE-GM: Elementary Estimator for sGGM

argmin
θ
||θ||1

Subject to: ||θ − B∗(φ̂)||∞ ≤ λn
(3.6)

θ̂n = [Tv (Σ̂)]−1 ⇓
EE-sGGM

argmin
Ω
||Ω||1,,off

subject to:||Ω− [Tv (Σ̂)]−1||∞,off ≤ λn
(3.7)

EE R(·) θ θ̂n R∗

EE-sGGM || · ||1 Ω [Tv (Σ̂)]−1 || · ||∞ 119 / 120



EE-Benefit: Easy to prove error bound

Error bound:

||θ̂ − θ∗||∞ ≤ 2λn

||θ̂ − θ∗||F ≤ 4
√
sλn

||θ̂ − θ∗||1 ≤ 8sλn

(3.8)

Condition:
λn ≥ ||θ̂n − θ∗||∞ (3.9)

Constant: s is the num of non-zero entries.
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