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Notation
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Notation

Σ The covariance matrix.

Ω The precision matrix.

µ The mean vector.

xi The i-th sample follows multivariate normal distribution.
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Reviews
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Reviews

Probability basics

Dependency vs. Correlation

Conditional dependency vs. partial Correlation
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Summary from last talk

Partial correlation is easy to estimate the value while conditional
independence is a relationship to infer.

In the Gaussian Case, they are equivalent.

From the structure learning angle, conditional dependence is about
the causal relationship, while partial correlation is, more specifically,
the linear relationship.

So the remaining question is why in the Gaussian case they are equivalent
and how to infer this relationship.
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Review: Gaussian Example

Suppose (X ,Y ) are uncorrelated. i.e.,(X ,Y ) ∼ N(0, diag(σ2X , σ
2
Y )).

f (x , y) =
1

2πσXσY
exp(−1

2
(

(x − µX )2

σ2X
+

(y − µY )2

σ2Y
))

=
1√

2πσX
exp(−1

2

(x − µX )2

σ2X
)

1√
2πσY

exp(−1

2

(y − µY )2

σ2Y
)

= f (x)f (y)

(2.1)

Therefore, if (X ,Y ) follows bivariate Gaussian, (X ,Y ) are uncorrelated if
and only if (X ,Y ) are independent.
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Why partial correlation and condition dependence are
equivalent in the Gaussian case?
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Multivariate Gaussian Distribution

Density function

Let X ∼ N(µ,Σ). f (x) = (2π)−
p
2 det(Σ)−

1
2 exp(−1

2(x − µ)TΣ−1(x − µ))
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Partition X , µ, and Σ

Partition X , µ, Σ, Ω.

µ =

[
µ1
µ2

]

Σ =

[
Σ11 Σ12

Σ21 Σ22

]

Ω = Σ−1 =

[
Ω11 Ω12

Ω21 Ω22

]
X =

[
X1

X2

]
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Conditional Distribution of Multivariate Gaussian

If X ∼ N(µ,Σ), it holds that X2 ∼ N(µ2,Σ22).
If Σ22 is regular, it further holds that

X1|(X2 = a) ∼ N(µ1|2,Σ1|2)

where µ1|2 = µ1 + Σ12Σ−122 (a− µ2) , and

Σ1|2 = Σ11 − Σ12Σ−122 Σ21 = (Ω11)−1.
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Partial correlation and condition dependence are equivalent
in the Gaussian case

X1|X2 = a ∼ N(µ1|2, (Ω11)−1),
If X1 only contains xi and xj , then xi and xj are conditional independent
on others iff Ωij = 0.
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Estimate the condition dependence graph/Partial
correlation

Now the only thing left is to estimate Ω = Σ−1. There are three potential
ways to do that. We call this problem as Gaussian Graphical model.

Directly calculate the inverse of the sample covariance matrix Σ̂.
However, we cannot do that when the sample covariance matrix is
not invertible.

Maximum Likelihood Method

Regression method

For the first one, the sample covariance matrix Σ̂ may not be invertible.
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Maximum Likelihood Method
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The MLE of µ

L(µ,Ω) = (2π)−
np
2
∏n

i=1 det(Ω−1)−
1
2 exp

(
−1

2(xi − µ)TΩ(xi − µ)
)
.

After take a first derivative, it is easy to show that x̄ = x1+···+xn
n
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The Likelihood of Ω

L(x̄ ,Ω) = (2π)−
np
2
∏n

i=1 det(Ω−1)−
1
2 exp

(
−1

2(xi − x̄)TΩ(xi − x̄)
)
.

Notice that (xi − x̄)TΩ(xi − x̄) is a scalar. Therefore,
(xi − x̄)TΩ(xi − x̄) = trace((xi − x̄)TΩ(xi − x̄)).
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The Likelihood of Ω

Since tr(A,B) = tr(B,A).

L(x̄ ,Ω) ∝ det(Ω−1)−
n
2 exp

(
−1

2

n∑
i=1

tr
(

(xi − x̄)T Ω (xi − x̄)
))

(4.1)

= det(Ω−1)−
n
2 exp

(
−1

2

n∑
i=1

tr
(

(xi − x̄) (xi − x̄)T Ω
))

(4.2)

= det(Ω−1)−
n
2 exp

(
−1

2
tr

(
n∑

i=1

(xi − x̄) (xi − x̄)T Ω

))
(4.3)

= det(Ω−1)−
n
2 exp

(
−1

2
tr (SΩ)

)
(4.4)

where, S =
n∑

i=1
(xi − x̄)(xi − x̄)T ∈ Rp×p.
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The Log-Likelihood of Ω

lnL(x̄ ,Ω) = const− n
2 ln det(Ω−1)− 1

2 tr

(
Ω

n∑
i=1

(x̄ − µ)(x̄ − µ)T
)
.

Since det(A−1) = 1/ det(A),

lnL(x̄ ,Ω) ∝ ln det(Ω)− tr

(
Ω

1

n

n∑
i=1

(x̄ − µ)(x̄ − µ)T

)
(4.5)

= ln det(Ω)− tr
(

ΩŜ
)

(4.6)

where Ŝ is the sample covariance matrix.
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Regression Method
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Partial Correlation
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Partial correlation

As we know, the partial correlation can also be solved by the linear
regression.

In the Gaussian case, we can use so-called neighborhood approach.
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Conditional Distribution of Multivariate Gaussian

If X ∼ N(µ,Σ), it holds that X2 ∼ N(µ2,Σ22).
If Σ22 is regular, it further holds that

X1|X2 = a ∼ N(µ1|2,Σ1|2)

where µ1|2 = µ1 + Σ12Σ−122 (a− µ2) , and

Σ1|2 = Σ11 − Σ12Σ−122 Σ21 = (Ω11)−1.
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Neighborhood approach

If X ∼ N(0,Σ) and let X1 = Xj .
Xj |X\j N(Σ\j ,jΣ

−1
\j ,\jX\j ,Σjj − Σ\j ,jΣ

−1
\j ,\jΣ\j ,j)

Let αj := Σ\j ,jΣ
−1
\j ,\j and σ2j := Σjj − Σ\j ,jΣ

−1
\j ,\jΣ\j ,j . We have that

Xj = αT
j X\j + εj (5.1)

where εj ∼ N(0, σ2j ) is independent of X\j .
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Neighborhood approach

We can estimate the αj by solving p simple linear regression.

if i-th entry of αj equals to 0, it means that Xi and Xj are partial
uncorrelated and conditional independent.

Perhaps we want more assumption on αj like sparsity.

Beilun Wang, Advisor: Yanjun Qi (University of Virginia)Joint Gaussian Graphical Model Review Series – II June 30th, 2017 25 / 26



Summary

In Gaussian case, the partial correlation and the conditional
dependence are equivalent

We have two ways to estimate them. First, directly estimate the
precision matrix by MLE. Second, solve p linear regression problem by
neighborhood approach.

None of them have any assumptions on the partial correlation
coefficient.

In the next talk, let’s introduce the solutions of these two estimators.
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