

Semi-Supervised Convolution Graph Kernels for Relation Extraction

(Intern work with NEC Labs)

Xia Ning CS&E, University of Minnesota, Twin Cities Yanjun Qi NEC Labs America, Inc

Outline

- Background:
 - Related work, problem formulation
- Graph representations for syntactics and semantics
- Convolution Graph Kernels for RE
- Semi-supervised learning framework for RE
- Experimental results

Background

- ▶ Relation Extraction (RE) task in Natural Language Processing (NLP)
 - ▶ RE: predict semantic relations between entities from sentences
 - Important for efficient knowledge learning
 - Knowledge identification and acquisition
 - Question answering systems

Example 1: Malignant paragangliomas have been well described in carriers of mutations of the succinate dehydrogenase B (SDHB) gene.

→ caused (Malignant paragangliomas, SDHB mutations)

Example 2: Where is Colmar Town?

- → located (Colmar Town, ??) → relational database query
- Challenges:
 - Scarce labeled data, abundant unlabeled data
 - Data manipulation and information encoding

Background

- Problem formulation:
 - ▶ Binary classification: $S = w_1 w_2 ... e_1 ... e_2 ... w_{n-1} w_n$

$$\mathcal{F}_R(S) = egin{cases} +1 & ext{if } e_1 ext{ and } e_2 ext{ are related by relation } R \ -1 & ext{otherwise} \end{cases}$$

- Related work:
 - Data representations:
 - Words: POS, dictionary indexing, chunk tag, entity type
 - Sentence: string, tree, shortest path
 - Kernels:
 - String kernels [1]: word sequence, linear order
 - ▶ All-path graph kernel [2]: random walk, sum of direct product
- Issues with existing methods:
 - Rigid matching between words/word sequences
 - Weak concurrent semantic and syntactic encoding

Graph Representation and Comparison

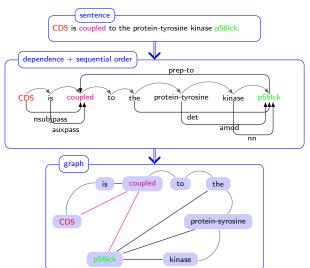
Motivations:

- Syntactic: a graph structure naturally exists in a sentence
 - ► A syntactic "relation" between words:

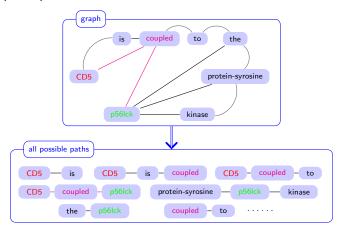
```
Example: cute babies \rightarrow "cute" \xrightarrow{\text{adjectival modifier}} "babies"
```

- ► Enriched graph structures: word → vertex, relation → edge
- Semantic: "soft" matching
 - Quantitatively compare words in a semantic-meaningful way Example: sim("walk", "run") > sim("walk", "talk") > sim("walk", "apple")

Methods:


- Graph construction:
 - Dependence relations + sequential order
 - Stanford dependence parser
- Word:
 - ► Language Model (LM), embedding representations

Graph Representation


► Graph Construction

Graph Representation

Graph Representation

Convolution Graph Kernel

- Key ideas on Convolution:
 - Decompose big structures into small substructures
 - Kernel on big structures = sum of kernels on small substructures
- Convolution on sentence graphs:
 - ► Word level kernel + dependence level kernel → graph level kernel
 - Multi-level semantic and syntactic information encoding and comparison
 - Multi-level semi-supervision
 - Word embedding: trained from unlabeled sentences
 - Dependence similarity: statics from unlabeled sentences

Convolution Graph Kernel

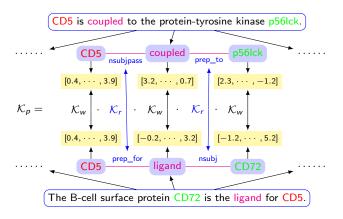
 \triangleright Kernel \mathcal{K}_G on graphs:

$$\mathcal{K}_{G}(G,G') = \sum_{p \in P^{I}(G)} \sum_{p' \in P^{I}(G')} \mathcal{K}_{p}(p,p') Pr(p|G) Pr(p'|G')$$

• Kernel \mathcal{K}_p on single paths:

$$\mathcal{K}_{p}(p,p') = \begin{cases} \mathcal{K}_{w}(w_{1},w_{1}') \prod_{i=2,|p|} \mathcal{K}_{r}(r_{i-1,i},r_{i-1,i}') \mathcal{K}_{w}(w_{i},w_{i}') & \text{if } |p| = |p'| \\ 0 & \text{if } |p| \neq |p'| \end{cases}$$

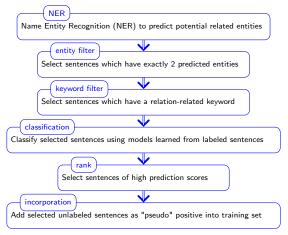
- Kernel \mathcal{K}_w on words:
 - **Embed each word within a 50-d space:** Φ(w)


$$\mathcal{K}_{w}(w, w') = \exp(-k \times d_{Euclidean}^{2}(\Phi(w), \Phi(w')))$$

- Language Model (LM) from semi-supervised deep learning
- Kernel K_r on dependencies:
 - ▶ Co-occurrence based similarities
 - ▶ Co-occurrence when two dependencies related by a common word

Convolution Graph Kernel

► Kernel on single paths



Semi-Supervised Learning Framework

Semi-supervision on sentence level: self training

Experimental Results

Table 1: Dataset characteristics for protein-protein interaction

Dataset	# +ppi	# -ppi	dsize	# SD/s	# slen	# ppi/s
AIMED	991	4784	3180	26.9	33.0	5.0
BioInfer	2534	7053	3470	31.5	42.3	8.8
HPRD50	163	270	920	23.4	31.2	3.0
IEPA	335	482	2463	30.0	36.5	1.7
LLL	164	166	537	30.3	37.6	4.3

Table 2: Comparison of SCGK with other methods

Dataset	all-path F AUC		ASK F AUC		S(SCGK F AUC		SSL-SCGK F AUC	
	'	AUC		AUC		AUC		AUC	
AIMED	0.564	0.848	0.554	0.824	0.562	0.821	0.572	0.834	
BioInfer	0.613	0.819	0.614	0.798	0.606	0.799	0.613	0.806	
HPRD50	0.797	0.730	0.727	0.777	0.762	0.819	0.767	0.819	
IEPA	0.751	0.851	0.735	0.809	0.737	0.791	0.740	0.797	
LLL	0.768	0.834	0.850	0.823	0.849	0.841	0.860	0.847	

Experimental Results

Table 3: Effects of path set

	mthd	F	AUC AUC	F	2 AUC	F	3 AUC
AIMED	upto sep	0.540	0.795	0.562 0.560	0.821 0.815	0.561 0.549	0.818 0.800
BioInfer	upto sep	0.606	0.788	0.606 0.591	0.799 0.776	0.568 0.469	0.753 0.594
HPRD50	upto sep	0.755	0.812	0.762 0.757	0.819 0.813	0.750 0.738	0.811 0.798
IEPA	upto sep	0.721	0.782	0.737 0.732	0.791 0.796	0.733 0.708	0.794 0.785
LLL	upto sep	0.849	0.841	0.833 0.825		0.830 0.816	0.805 0.740

Table 4: Results for SCGK method: BioInfer

k	1			2	3		
٨	F	AUC	F	AUC	F	AUC	
0.005	0.485	0.645	0.498	0.672	0.509	0.685	
0.010	0.606	0.788	0.606	0.799	0.568	0.753	
0.020	0.470	0.617	0.484	0.639	0.492	0.648	
0.030	0.465	0.589	0.480	0.630	0.489	0.647	

References

P. Kuksa, Y. Qi, B. Bai, R. Collobert, J. Weston, V. Pavlovic & X. Ning. Semi-Supervised Abstraction-Augmented String Kernel for Multi-Level Bio-Relation Extraction FCMI PROP 2010

A. Airola, S. Pyysalo, J. Bjorne, T. Pahikkala, F. Ginter & T. Salakoski
All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning
BMC Bioinformatics, volumn 9, 2008

