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https://www.youtube.com/watch?v=RLWuzLLSIgw

Problem definition

'his paper defines Stochastic Beam Search (SBM)
'he main issue in defining an SBM is how to create
a soft committo a sampling ‘decision’ made at step
L.

More precisely, what is P6:".y"|x») in the sequential
sampling procedure?

Assuming that y"initially a low probability to be
sampled P |x).

SO the naive use of defining po".y? 0 =P xPe™ |« ") Wil
mean that sequences with initial low probability will
actually have much lower probability to be
repeatedly sampled in the SBM.




Executive Summary

For Stochastic Beam Search (SBM) of width k, at
each step of the decision sequence, k ‘decisions’
are sampled using Gumbel-Top-k trick

SBM sequential sampling procedure is unbiased
and equivalent to sample Top-k sequences from the
complete ‘decisions’ tree

n a translation task SBM obtains more diverse and
nigher quality translations then other interence time
methods

SBM can be used to construct low-variance
estimators for expected sentence-level BLEU score
and model entropy
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Gumbel-Top-k Trick

Sampling from a discrete distribution parametrized by unnormalized
log-probabilities: r, =%exp(xk) where z=) exp(x,)

Jj=1

The Gumbel(0)=—-log(-log(Uniform(0,1))

The Gumbel-Max Trick:
y=argmaxG, ~w, G, =G+, ~Gumbel(p;), G, ~Gumbel(0)

ie{l,...k}
Similarly, the Gumbel-Top-k Trick:

Theorem 1. For k < n, let IT,...,I;; = argtopkG,..
Then I7,...,I; is an (ordered) sample without replace-

ment from the Categorical (E Xpéi _ ;e N ) distribu-

jen exXp@;’
tion, e.g. for a realization i, ..., ;. it holds that

£ exp ¢

9=1 ZEE.'VJ'.' €Xp ¢£

P(I7 =1ii,...I; =1i}) = 4)

where N = N \ {i1,...,i5_,} is the domain (without
replacement) for the j-th sampled element.



SBM Algorithm

Algorithm 1 StochasticBeamSearch(pg, k)

Input: one-step probability distribution pg, beam/sample size k
Initialize BEAM empty
> add (" =2, éx =0,Gy,, = 0)1toBEAM
fori =1,...,stepsdo
Initialize EXPANSIONS empty
for (y°, ¢s, Gss) € BEAM do
4 +— —00
for S’ € Children(S) do

4 ~
bg +— ds + logpe(y® |y°)
Gy, ~ Gumbel(¢g)

3 o XA W

Z + max(Z, Gy, ) Pure I\/Iagicj
12: end for
13: for S’ € Children(S) do
L14: G 47 — log(~exp(—G¢,S) —exp(—Z) + exp(—Gy,))
15: add (y° , s/, G, ) 10 EXPANSIONS
16: end for
17: end for

18: BEAM < take top k of EXPANSIONS according to G

19: end for
20: Return BEAM




Unbiased SBM

At =1, the Gumbel-Top-k trick works directly and a beam of width k is

sampled with probability Categorical (E‘e’j’eﬁfp 51 € N) where ¢. =log p,(y'|x)

At t=k>1, the following condition needs to hold G, = gedmax Gs..,
'€ Children :

We need to sample a set of Gumble variables {G4,|max; G;, = T} with the

following procedure:
1. Sample i* ~ Categorical (z"_"& f’) OJ) We do not
need to condition on 7T since the arg max %~ 1S in-
dependent of the max 7" (Section 2.3).

2. Set C~¥¢,i, = T, since this follows from conditioning on
the max 7" and argmax ™.

3. Sample G, ~ TruncatedGumbel(¢;, T) for i # i*.



Unbiased SBM

A random variable G’ has a truncated Gumbel distri-

bution with location ¢ and maximum T (e.g. G’ ~
TruncatedGumbel(¢, T')) with CDF F 1(g) if:

Fy 1(9)
=P(G'<yg)
=P(G<yg|G<T)
P(G<gNG<T)
T P(G<T)
_ P(G < min(g,T))
P(G<T)
Fy(min(g, T'))
Fy(T)
_ exp(—exp(¢ — min(g, 7))
exp(—exp(¢ — 7))
= exp(exp(¢ — T') — exp(¢ — min(g, T'))).
The inverse CDF is:

F,p(u) =

(20)

21)

— log(exp(¢ — T') — log u).

3. Sample G, ~ TruncatedGumbel(¢;, T) for i # i*.
This works because, conditioning on the max 7" and
arg max ¢*, it holds that:

P(Gy, < glmax Gy, = T,argmax Gy, =i*,i #i*)
= P(Gy, < g|Gy, < T).

Equivalently, we can let G4, ~ Gumbel(¢;), let Z =
max; G4, and define

G' . F¢“ (Fqb,-,Z(Gfbi))
= ¢; — log(exp(¢: — T)
—exp(¢; — Z) +exp(¢; — Gy,))
= —log(exp(—T) — exp(—Z) + exp(—Gy,))-

(22)
Here we have used (20) and (21). Since the transformation

(22) is monotonically increasing, it preserves the arg max
and it follows from the Gumbel-Max trick (3) that

= : eXp @;
argmax G, = argmax GG,. ~ Categorical .
gz & g'z 0¥ g (Zexp¢3)
We can think of this as using the Gumbel-Max trick for step
1 (sampling the argmax) in the sampling process described
above. Additionally, for i = arg max; G:

Gy, = F; 1 (Fy,2(Gs.) = F; p(Fy, 2(2)) =T



Experiments

Diverse Beam Search - The task, in the context of neural machine
translation, is to obtain a diverse set of translations for a single source
sentence X.

BLEU score estimation - The task is to evaluate the expected sentence
level BLEU score for a translation y given a source sentence Xx, by
sampling without replacement different translations

Conditional Entropy estimation - Similar to the BLEY score estimation
above



Diverse Beam Search

Experiments are run against Beam Search (BS), Sampling, Stochastic
Beam Search(SBS) (sampling without replacement) and Diverse
BeamSearch with G groups (DBS(G))

__ # of unique n-grams in k translations

Average n-gram diversity is defined as: 4, = _ ,
total # of n-grams in k translations
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Figure 3. BLEU score estimates for three sentences sampled/decoded by different estimators for different temperatures.
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Figure 4. Entropy score estimates for three sentences sampled/decoded by different estimators for different temperatures.



DISCUSSION

e Stochastic Beam Search is a powerful novel
technique that offers unbiased sampling of top-K
candidates without calculating the complete
‘decisions’ tree

* [his also works as a good sampling technique since
with a good choice of Kk, the top-k choices may offer
a good estimate to the probability mass

* This approach can also be leveraged as a RL
technique




