Junction Tree Variational Autoencoder
for Molecular Graph Generation

Wengong Jin, Regina Barzilay and Tommi Jaakkola

Presentation adapted from slides by: Wengong Jin
Presenter: Yevgeny Tkach

2019 Spring @
https://qdata.github.io/deep2Read/



Executive Summary

 Molecule generation using VAE. Encoding and
decoding Is based on spacial graph message
passing algorithm.

* |nstead of generating the molecule node by node
which can be looked at as “character level”
generation, this work builds higher level vocabulary
based on tree decomposition of the molecule graph.

» Using proper “words/parts of speech” helps to make
sure that the final molecule is valid.



Drug Discovery

Generate molecules with high potency



Drug Discovery

Modify molecules to increase potency




Molecular Variational Autoencoder

Encoder Decoder
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Bayesian optimization over OO Gradient ascent over
latent space latent space

Potency Prediction

Find “best” drugs Make “better” drugs

[1] Gomez-Bombarelli et al.,Automatic chemical design using a data-driven continuous representation of
molecules, 2016



How to generate graphs?

Node by Node

v/ Valid X Invalid X Invalid X Invalid v~ Valid

Not every graphs is chemically valid
Invalid intermediate states — hard to validate

Very long intermediate steps — difficult to train (Li et al., 2018)

[2] Li et al., Learning Deep Generative Models of Graphs, 2018
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How to generate graphs?

Group by Group
O O O - Shorter action sequence
N N S N S

- Easy to check validit
v’ Valid v/ Valid v’ Valid y y



Tree Decomposition

Molecule Junction tree
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- Vocabulary size: less than 800 given 250K molecules



Molecule

S

@
!

Tree
Decomposition

Iz

Cl

O
N

', Clusters
S

Our Approach

Molecular
Graph GG

Encode
—_—
/A
Junction |
Tree T ]
C; hd Encode
—_—

zT

Decode
—_

Decode T

Cl

Nt



Graph & Tree Encoder

Neural Message Passing Network (MPN)



Graph Encoding

\' Node feature

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016



Graph Encoding
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[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016



Graph Encoding
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‘ 2-hop neighborhood graph

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016



Graph Encoding
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Messages Node feature Edge feature

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016



Graph Encoding
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[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016



Tree Encoding

lmm
‘\ /

Myg;

m;; = GRU(x;, {m; }keni)\)

To capture long range interactions



Graph & Tree Encoder

* average-pooling * root node

_HE N BN _HE N BN
70} 7T




Tree Decoder
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Tree Decoder

Label Prediction @ @

[4] Alvarez-Melis & Jaakkola, Tree-structured decoding with doubly-recurrent neural networks



Tree Decoder

1. Topological Prediction @
Message vector IFT I N
O

2. Label Prediction

Topological Prediction: Whether to expand a child or backtrack?

Label Prediction: What is the label of a node?



Tree Decoder

(0

Topological Prediction

Backtrack

Topological Prediction: Whether to expand a node or backtrack?

Label Prediction: What is the label of a node?



Tree Decoder
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Tree Decoder

Algorithm 1 Tree decoding at sampling time

Require: Latent representation z7
1: Initialize: Tree 7 < ()
2: function SampleTree(z, t)
3:  Set A; < all cluster labels that are chemically com-
patible with node 7 and its current neighbors.
4 Set d; <— expand with probability p;. > Eq.(11)
5: ifd; = expand and X; # () then R
6: Create a node j and add it to tree 7.
7 Sample the label of node 7 from &;  ©. Eq.(12)
8 SampleTree(s,1 + 1)
9: endif
0:

10: end function

pe = o(u*-17(Wix;, + Wiz + W2 Z hy;,) (11)
(k:it)egt
q; = softmax(U’'r(Wizs + Wsh;;))  (12)

‘Cc(ﬂ - Zt ['d(pt,ﬁt) T Zj ‘Cl(qja QJ) (13)



Graph Decoder
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Graph Decoder

Enumerate how clusters
are merged together

Encode each candidate
graph by graph encoder
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Score each candidate:

fzq(G’i) — hGi " 4G @
Enumerated \_,

G, Graph encoder
subgraphs

f*(Gi) —log »  exp(f*(Gj))

G’ eg;

(16)
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Training? VAE?

Tree decomposition
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The KL divergence part on
the latent space is not
discussed in the paper.

ZG is only used for
generated subgraphs
ranking so not clear how it
falls in the VAE paradigm.

From the code, training is
with KL annealing following
“Generating Sentences
from a continuous space”
paper by Bowman et al.



Experiments

Data: 250K compounds from ZINC dataset

Molecule Generation: How many molecules are valid when
sampled from Gaussian prior?

Molecule Optimization
Global: Find the best molecule in the entire latent space.

Local: Modify a molecule to increase its potency



Baselines

SMILES string based:

1. Grammar VAE (GVAE) (Kusner et al., 2017);

2. Syntax-directed VAE (SD-VAE) (Dai et al., 2018)
Graph based:

1. Graph VAE (Simonovsky & Komodakis, 2018)

2. DeepGMG (Li et al., 2018)

Li et al., Learning Deep Generative Models of Graphs, 2018
Kusner et al., Grammar Variational Autoencoder, 2017
Dai et al., Syntax-directed Variational Autoencoder for structured data, 2018

Simonovsky & Komodakis, GraphVAE: Towards generation of small graphs using variational
autoencoders
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Molecule Generation (Validity)

GVAE GraphVAE SD-VAE DeepGMG Ours (w/o Ours
checking)
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Molecule Optimization (Global)

Property Score of the Best Molecule
Property Prediction

Bayesian T

Gaussian
Process

Optimization
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CVAE GVAE SD-VAE Ours

Encoder Decoder

Property: Solubility + Ease of Synthesis



Molecule Optimization (Global)
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Property: Solubility + Ease of Synthesis



Molecule Optimization (Local)

Property Prediction Average Improvement
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Molecule Optimization (Local)

o S Average Improvement

Preservation = 0.6
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Molecule Optimization (Local)

Average Improvement
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DISCUSSION

‘word level” prediction can offer significant

improvement by shortening the decision process.
_atent space optimization is an interesting and
oowerful technique.

“Teacher forcing” introduces data bias which can be
reduced via RL technigues and the GAN complete
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imilar to SMILES this paper samples a random
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ne graph tree structure when: using an
minimal spanning tree, choosing an

node to be the root of the tree, choosing a

random ordering of the children of each tree node.
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Original code is available at: https://github.com/wengong-jin/icmi18-jtnn



https://github.com/wengong-jin/icml18-jtnn

