
Convolutional Imputation of Matrix 
Networks

Qingyun Sun      Mengyuan Yan
David Donoho       Stephen Boyd 

Presenter: Yevgeny Tkach 

2019	Spring	@		
h.ps://qdata.github.io/deep2Read/



Executive Summary
• Graph G=(V,E) where every node v, is represented 

by a matrix M. 
• Matrices are only partially observed and the task is 

to perform matrices completion by leveraging extra 
information provided by G. 

• Authors approach is using SVD for matrix 
completion and using spectral theory to propagate 
information from the graph. 

• Experiments are essentially synthetical or consider 
sequential frames.
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• Consider a matrix X with partially observed entries from Ω.

• We notate                               which defined     

• The problem is finding the best matrix M that solves

• “The program is a common sense approach which simply seeks the 
simplest explanation fitting the observed data”

• This NP-hard Non-Convex Problem is usually relaxed to:

• This is usually solved with Lagrange multipliers which also allow noise

Matrix completion problem

PΩ(X) =
Xij ,    (i, j)∈Ω
0,        otherwise

⎧
⎨
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min
M

      rank(M )

s.t.    PΩ(M ) = PΩ(X)

min
M

      M *

s.t.    PΩ(M ) = PΩ(X)
M * = σ k (M ),  where 

k=1

n

∑ σ k (M ) is the k-th largest singular value of M



• For low rank matrices solving the problem becomes feasible and most 
research is focused on such matrices.

• The following Theorem is the theoretic foundation for popular low rank 
SVD algorithms:

Low Rank SVD



• The SVD solution is often calculated sequentially until some 
convergence criteria:

• An important part of the low rank SVD approximation theory is 
specifically defining the assumptions on the available data such that a 
“good” completion can be guaranteed.

• Specifically it requires the number of samples to be proportional to the 
Incoherence (“spread out”) of the matrix.

Low Rank SVD



• Our problem is to complete N different matrices where different 
matrices are connected between each other.

• The connection between the matrices represented via graph G=(V,E) 
with adjacency matrix W.

• matrix network A maps each node k in the graph to it’s matrix A(k).

• The matrix completion problem is defined in the Furrier domain 
(Spectral Theory):

• U is a unitary N×N matrix, and the eigenvectors of L, the normalized 
Laplacian matrix of W, are the row vectors of U.

• The graph Furrier transform of A,               ,

• The convex optimization target: 

Matrix Network



Convolutional Imputation Algorithm

• Where                                  and 

• For this algorithm convergence is guaranteed under coherence and 
sampling assumptions

Sλ (Â) =V1(Σ − λΙ)+V2
* Â =V1ΣV2

*



Experiments
• Feature matrices on Facebook network - This is a synthetic dataset that 

is based on a real sample from the Facebook network. The feature 
matrices (the low rank SVD) for each node were randomly generated, and 
the purpose of the experiment was to check that these matrices cn be 
recovered

• MRI completion - In the 88 frames there are 2 frames missing, and pixels 
sampled from the rest i.i.d. from a Bernoulli distribution with p = 0.2.

• SPECT completion - The sequence has 36 frames, capturing 4 periods of 
heart beats. 4 consecutive frames out of the 36 frames are missing and 
the other frames are sampled i.i.d. from a Bernoulli distribution with p = 0.2



MRI completion



SPECT completion



Discussion
• The problem is novel, however we don’t seem to 

have real world data sets that capture the true 
nature of the problem 

• Other approaches that this model compares to were 
not designed for the problem so the comparison is 
not that interesting 

• Their result is quite a natural extension to the 
existing SVD based matrix completion literature 


