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Background

e CNNs have been great at predicting protein-ligand interactions poses and
binding affinities
e However, CNNs are difficult to interpret
e A new method is needed to:
o Reveal which parts of the atoms are important
o Understand how the atoms are represented at different layers
o Understand how what aspects of the atoms the model learns to favor different classes

e Created 4 new visualization methods:
o First layer filter heatmaps
o Masking
o Gradient
o Conserved Layer-wise Relevance Propagation
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23.5 A x 23.5A x23.5 A grids @ 0.5 width voxels
3 x 3 x 3 filter, stride 1
Atom coordinates discretized into 4D grid (3D space + 1D atom type features)

based on the Van der Waals radius and distance of atom to grid point
o  Will explain in detail during the Atomic Gradient



Loss Functions

Affinity Pose Score
e Log units using pseudo-Huber e Score poses by generating probability
e Interpolated b/w L2 and L1 loss according distribution over high res (<2A) and low
parameter o res (>4A), scaled to [0,1] with softmax
e Logistic loss:
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Input Data

Data Sources

1. Known poses, binding sites, and binding
affinities from PDBBind2016 (15,814
protein-ligand complexes)

2. Alternate conformers of ligand generated
with RDKit and redocked using Vina

3. Predicted poses from model after 3 rounds
of iteratively training

Total: 255,035 protein-ligand complexes

Features

Table 1

The 35 atom types used in gnina. Carbon atoms are distinguished by aromaticity and
adjacency to polar atoms (“NonHydrophobe”). Polar atoms are distinguished by

hydrogen bonding propensity.

Receptor Atom Types

Ligand Atom Types

AliphaticCarbonXSHydrophobe
AliphaticCarbonXSNonHydrophobe
AromaticCarbonXSHydrophobe
AromaticCarbonXSNonHydrophobe
Calcium

Iron

Magnesium

Nitrogen

NitrogenXSAcceptor
NitrogenXSDonor
NitrogenXSDonorAcceptor
OxygenXSAcceptor
OxygenXSDonorAcceptor
Phosphorus

Sulfur

Zinc

AliphaticCarbonXSHydrophobe
AliphaticCarbonXSNonHydrophobe
AromaticCarbonXSHydrophobe
AromaticCarbonXSNonHydrophobe
Bromine

Chlorine

Fluorine

Nitrogen

NitrogenXSAcceptor
NitrogenXSDonor
NitrogenXSDonorAcceptor

Oxygen

OxygenXSAcceptor
OxygenXSDonorAcceptor
Phosphorus

Sulfur

SulfurAcceptor

lodine

Boron
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Prediction

Trained in 150,00 iterations with batch size 50

Each batch balanced number of low- and high-res poses

Every pose is randomly rotated and translated relative to ligand center
Tested against other CSAR dataset not in training data:
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e CNN (R=0.74, RMSE=1.44)

T Vina (R=0.55, RMSE=1.86)
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Results (Docked Poses)

(a) 100h: 2.698/0.255 (b) 1w4o: 4.933/0.983 (c) 4djv: 5.951/0.894



Convolutional Filter Visualization (Averaged)

Bias
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First layer shows how network
maps atoms types

Averaged over all dimensions
(3x3x3)

Some types have low avg wts
cross all filters (metals)

o

Network isn't overfitting
rare metals

Some types have all neg vals

o

Network learned to turn
off those filters.
Removing them may
make simpler model



Convolutlonal Filter Vlsuallzatlon (FuII)
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Convolutional Filter Visualization (Full)
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Masking

OH

Repeat for all ligand atoms, color
atoms by masking score

Repeat for all protein residues in
binding site, color residue by
masking score

Computationally demanding since
the NN is run many times



Atomic Gradient

e All atomic coordinates (not discretized) are used directly as input
e Discretization is differentiable and is what is fed into NN

242 ( 4d o

e 0<d<r ———er 0<d<r
= P of of og od
gdn=C 2@ 245 rcaqas  B=8 . 12 o oa 2 0g od oa
e’r e’r e er2 e2r ’ geGa
> 1.5r
° 1215 ) 0 d =151 Grad of scoring func w/ t coordinat
Discritation function with VDW Differentiable with fac of Scoring func wirespect coordinates =
. ; chain rule + sum over grid points with same
and distance of atom to voxel respect to distance

atom type that overlap the atom, Ga

e Give insight into how input should be changed to produce a better output
e Calculated forward pass first, then the backward pass computes loss gradient
e Negative vector is how atom should be moved in 3D space



Conserved Layer-wise Relevance Propagation (cLrp)

e Calculates a Relevance score that is propagated back through NN

e “Performed proportionally to the input activations of each layer, such that the
relevance of node i in layer | is the sum of the relevances of its successor
nodes, j, weighted by the activation value generated along the edge zij during

the forward pass”

o Input activation: Z, = Xw;, where node i is in layer [ with successor node j

) Z 1+1) (I+1) . (1)
RO ZZU A p(+1) Fy=...= 3 RV =S"RO = .. = SR
ij del+1 del d
Invariant across layers

e Redistribute relevance directed at dead nodes to remaining nodes in layer
0 z=+0
Sl:Z{Rj ZjJ:O Rf{

0 ZjZO
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Results (low scoring complex)

Affinity Prediction Score = 2.698

e Gradients
o Move aromatic
away from his =>
not learned to
value aromatics

e CLRP
(b) CLRP
o Focuses on
Pose Score = 0.255 central ribose =>
highlight decision
boundaries?
e Masking
o Aromatic isn’t
favored?

(d) Gradient (e) CLRP (f) Masking



Results (low affinity score, high pose score)

Affinity Prediction Score = 4.933

e CLRP

o Phosphate and
uracil groups
more relevant

e Masking

o T45is more

favorable, which
Pose Prediction Score = 0.983 interacts with
uracil

(b) CLRP

(d) Gradient (e) CLRP (f) Masking



Results (middling affinity score, good pose score)

Affinity Prediction Score = 5.951

e Gradient
o Arrows inring
point ot center =>

smaller func
group?
o  Shift?
e Masking
(b) CLRP o Disfavors
Pose Score = 0.894 aromatics
e CLRP
o CandOof
carbonyl
counter-balance
=> artifact of
decompsong score
to atoms?

(d) Gradient (e) CLRP (f) Masking



Additive Analysis

Single Atom Additivity (Pose Scoring)
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Can individual atom masking

scores sum to the total score?
o Linear relationship: score can be
decomposed
Pose scoring
o Squashed to [0, 1], changes not that
meaningful
Affinity prediction is more correlated



Frequency (Hundreds)

Frequency (Hundreds)

Atomic Score Correlations From Different Methods

Receptor Score Correlations (Affinity Prediction)
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Some agreement b/w Gradient and
CLRP

However, there is a general lack of
correlation, which shows each score will
provide a different insights



Analyzing Empty Space

e 99% of dead nodes in 1st layer
o Implicit solvent?

e (Green: favorable relevance
scores. If the protein or ligand
filled this space it would have a
higher score

e Red: Unfavorable relevance
scores. If the protein or ligand
filled this space it would have a
lower score

(a) Pose (b) Affinity



Conclusion

e All visualizations methods relay different information

e Gradient: Can show what the NN “wants” to produce a higher scoring output
in a single forward and backward pass

e CLRP: Preserves the relevance of each atom in a single forward and
backward pass

e Masking: Manipulate the input to understand the changes in values. Very
costly since it runs NN thousands of times



DeepMind



Input

Predict pairwise interactions using a MaxEnt model on CATH cluster reps (~6Kk):

RASH_HUMAN, Residues less than 5.00 Angstroms apart
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190 Evolutionary Couplings shown

# Evolutionary Coupling (Max Score) Known Structure Contact l(lmmPDBl ucture)
Evolutionary Coupling (Min Score) Selected Computed Siruciur

From EVFold Output for Ras, From John Ingram, Debbie Marks Lab



Deep Dilated Convo utiona Residual networ

Repeat 220 times, cycling through
dilations 1, 2, 4, 8

1 residual block R

Modifies a 64x64x128 o1 i ~ Input features
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Auxiliary losses

p encodes secondary structure 5
edicting it Sheel

e We know the contact ma
A distance network should be good at pr

o Auxiliary loss of secondary structure from 1D red
for both (i, i+63) and (, j+63)
Ensembled across all 2D crops
e (3 Accuracy on CASP11 ~84%
e Predicting secondary structure im

uctions

proves contacl prediction

Two N x 8 secondary structure predictions

NxN
Input features

N x N x40

| Distance predictions

o DeepiMind




gdt progress

350

400

Repeated gradient descent

Using simple vdW lnstead‘ |
of score2 [

Highly parallelizable




