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1 Motivation

Need for models that can analyze spherical images (for example, drones, robots,
sensors,etc.). 2D CNNs/translational convolution don’t work because any pla-
nar projection of a spherical signal will result in distortions. Spherical CNNs
introduces spherical convolution that is rotation invariant for spherical images.

2 Key Challenges

• The convolution is on S2 sphere, no perfectly symmetrical grids like pixel
grids in images for the sphere exist: How to define rotation by a pixel?

• computational efficiency: SO(3) is a three-dimensional manifold, so a naive
implementation of SO(3) correlation is O(n6).

3 Background

The Unit Sphere S2 : The set of points x ∈ R3 with unit norm. It is a
two-dimensional manifold, which can be parameterized by spherical coordinates
α, β.

Spherical Filters: f : S2 → RK , where K is the number of channels.

Rotations: Any orientation can be defined by 3 elemental rotations. The set
of rotations in three dimensions is called SO(3), the “special orthogonal group”.
parameterized by ZYZ-Euler angles.

Rotating a point on a sphere: If we represent points on the sphere as 3D
unit vectors x, we can perform a rotation using the matrix-vector product Rx.
The rotation group SO(3) is a three-dimensional manifold. Rotation has three
degrees of freedom : R(α;β; γ) = Z(α)Y (β)Z(γ) ∈ SO(3)

1



4 Correlation on the sphere and rotation group

Any rotation can be defined By analogy with 2D planar CNNs:

f ? ψ(x) =

∫
f(y)ψ(x− y)dy (1)

Define translation : T−1
x (y) = x− y

f ? ψ(x) =

∫
f(y)ψ(T−1

x (y))dy (2)

Extending to rotations:
For first Layer:

f ? ψ(x) =

∫
S2

f(y)ψ(R−1
x (y))dy (3)

After the first layer defined on SO(3):

f ? ψ(R) =

∫
SO(3)

f(Q)ψ(R−1(Q))dQ (4)

where 3d rotation is defined by: Rx(t) = Rxṫ

Spherical Rotation is equivariant to rotation For continuous functions
f and ψ : If rotation operator is defined as: [LRf ](x) = f(R−1x)

[LRf ] ? ψ = LR[f ? ψ] (5)

5 Results

Equivariance Error: Equivariance error introduced because of discretization
of f and ψ. Equivariance Error ∆:

∆ =
1

n
Σn

i=1

std(LRiφ(fi)− φ(LRifi))

std(φ(fi))
(6)

• the approximation error grows with the resolution and the number of
layers

Rotated MNIST on sphere

• MNIST dataset projected on the sphere

• Version 1(NR): each digit is projected on the northern hemisphere

• Version 2(R): each projected digit is additionally randomly rotated.

• trained each model on the non rotated (NR) and the rotated (R) training
set and evaluated it on the non-rotated and rotated test set.

• When trained on NR and tested on R, the spherical CNN shows a slight
decrease in performance compared to when trained and tested on Rotated,
but still performs very well.
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Rotated MNIST Results

QM7 task results

Prediction of Atomization Energies from Molecular Geometry

• QM7 task

• the atomization energy of molecules to be predicted from geometry and
charges
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