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Geometric Deep Learning

1 Introduction

In the last few years, deep learning has been used to solve a wide range of
problems such as image recognition and text classification. Models like Con-
volutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
achieve state of the art results on many vision and text related tasks. However,
these models are trained on data in a euclidean space. Their extensions to ge-
ometric (non-euclidean) data like graphs and 3d objects had remained elusive
until the last 2-3 years. Deep learning for geometric objects is an active area of
research and this scribe explains one of the proposed methods.

2 Why Geometric Deep Learning

Most of the widely accepted deep learning methods such as CNNs and RNNs
are hard to extend to problems in non-euclidean domain. Therefore, there is a
need for models that are able to work on geometric data.

2.1 Euclidean vs Non-Euclidean Geometry

Euclidean geometry, described by a Greek Mathematician Euclid, is an axiom
system about points, lines, and planes. It consists of five axioms:

1. A straight line may be drawn between any two points.

2. Any terminated straight line may be extended indefinitely.

3. A circle may be drawn with any given point as center and any given radius.
4. All right angles are equal.
5.

If two straight lines in a plane are met by another line, and if the sum
of the internal angles on one side is less than two right angles, then the
straight lines will meet if extended sufficiently on the side on which the
sum of the angles is less than two right angles.



Examples of euclidean data are images which are defined on a 2d plane. If
we curve an image, it becomes a 3d object, which can be considered a geometric
object. In contrast to euclidean, non-euclidean data do not possess properties
like common coordinate system and shift invariance, which makes it hard to
extend well known deep learning models to such type of data.

3 Graph Convolutional Networks

One of the methods proposed in the last few years to apply convolutional neural
networks on graphs is Graph Convolutional Networks (GCN) [1]. GCN uses
spectral convolutions on graphs to learn characteristics of the nodes for different
tasks. The goal in these networks is to learn a function on a graph G € (V, E)
that takes as input:

e A feature description x; for every node in a N x D feature matrix where
D is the number of input features.

e Description of the graph in a matrix form. Typically, we take the adja-
cency matrix A.

and produce a node level output N x Z where Z is the number of output features
per node. Each neural network layer is defined as:

HY = f(HY, 4) (1)
FHY,4) = o(AHOW W) (2)
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Figure 1: Graph Convolutional Networks

However, there are two main limitations with equation 2. First, for each
node, we only sum up the feature vectors of its neighbors, not itself. To fix this,
we add a self loop to each node which is equal to adding an identity matrix



to A. Secondly, A is not normalized, which can change the coordinate scales
upon multiplication. Multiplying A with inverse of the diagonal node degree
matrix D solves this problem. The GCN paper goes one step further and uses
symmetric normalization D~1/24D~1/2, The final equation becomes:

FHD, A) =o(D™V2(A+ 1D~ V2HOWO) (3)

Figure 1 demonstrates a GCN. An input graph is passed through several
layers before we get embeddings for every node. These embeddings can be
aggregated together using sum or pooling to get a representation of the whole
graph.

3.1 Embeddings Visualization

GCN is a powerful model that extracts effective node embeddings even before
the training starts.

Figure 2: Karate club graph, col- Figure 3: GCN embedding (with ran-
ors denote communities obtained via dom weights) for nodes in the karate
modularity-based clustering club network.

Figure 4: Visualization of node embeddings created after one forward propaga-
tion in the network

Figure 2 shows a graph for a karate club. Data for this graph is passed
once in the GCN with randomly initialized weights. In the last layer, embed-
dings for each node are extracted and shown in figure 3. The node embeddings
demonstrate that GCNs are effective in capturing patterns in the graph and the
embeddings it creates resemble closely the structure of the input graph.

4 Conclusion

Graph convolutional networks uses spectral convolutions to solve graph-related
tasks with a neural network. The concept of convolution has been extended
from a euclidean space to non-euclidean space (Graphs) by the use of spec-
tral convolutions. These networks have been applied to citation networks and
knowledge bases and demonstrate state of the art results.



DeepWalk - Turning Graphs into Features via
Network Embeddings

5 Introduction

Generating meaningful representations of nodes in graphs is an important prob-
lem. Such representations can be used in a wide variety of tasks such as node
classification, link prediction, community clustering etc. DeepWALK proposes
a deep learning based method to create latent representations of nodes based on
their neighbors. These representations outperform other benchmark methods
in a plethora of tasks.

6 Motivation for Node Representation

Creating meaningful representations of nodes can help in a variety of tasks.
However, such representations are not easy to create; they usually require
global knowledge of the graph and are ineffective when the graphs are small [4],
[3]. Moreover, these representations need to encompass some semantic meaning
about the structure and neighborhood of the graph. DeepWALK proposes such
embeddings that outperform all benchmark methods and demonstrate semantic
information about the graph.

7 Algorithm

DeepWALK is an extension of the word2vec algorithm [2] that has been exten-
sively used to create word embeddings. The basic idea behind word2vec is that
a word mostly appears in the same neighborhood (skipgram algorithm). More
precisely, in word2vec, given a word w;, we try to predict the neighboring words
Wis1y ooy Wi, AN Wig1, ..., Wity, Where wy, is the window size. A neural net-
work is trained that takes as input a word w and predicts the probability of
other words being the neighbors of w. This simple idea has been extended to
graphs by DeepWALK to create node embeddings. It works in three steps:

e Random Walk Generation: We randomly pick a node in the graph
and perform a random walk to ¢ steps. A random walk from a given node
N is a sequence of steps taken uniformly to all neighbors from V.

e Representation Mapping: Once we have a random walk W as Ny, No, ...
we generate a vector representation of all the nodes in W as one hot en-
codings.

e Skipgram: Given one hot encoding of all nodes in a random walk, we
apply skipgram algorithm from word2vec [2] to generate embeddings for
each node.
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Figure 5: Original graph vs 2D plot of node embeddings

8 Key Insights & Conclusions

DeepWALK create highly effective node embeddings which can achieve state
of the art results on variety of tasks. Furthermore, the embeddings encompass
properties of node neighbors and graph structure as depicted by figure 5. Fur-
thermore, DeepWALK is a parallelizable algorithm that can run on any graph
size. These properties make DeepWALK an effective and desirable solution for
creating powerful and semantically meaningful embeddings.

9 Goals Achieved

DeepWALK was proposed to 1) apply deep learning algorithms to generate node
embeddings 2) scale the method to any size of graph. It achieved in fulfilling
both these goals since the results outperformed most of the benchmark methods
and the method can be scaled to any size of graph.
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