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Rotationally Equivariant Features

Figure: https://www.youtube.com/watch?v=ENLJACPHSEA
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Benefits

Data efficiency
Therefore, less parameters
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Definition

f : R3 → RKn 3D feature map of the n-th layer
g = tr ∈ SE(3) 3D rigid transformation on R3
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Rotation of the feature map f

[π(r)f ](x) := ρ(r)f (r−1x)

Figure: To transform a vector field (L) by a 90◦ rotation g, first move each arrow
to its new position (C), keeping its orientation the same, then rotate the vector
itself (R). This is described by the induced representation π = Ind

SE(2)
SO(3) ρ, where

ρ(g) is a 3× 3 rotation matrix that mixes the three coordinate channels.
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Transformations of the feature map f

[π(tr)f ](x) := ρ(r)f (r−1(x − t))
ρ(r) : RK → RK , invertible
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Formulation

A filter κ (e.g. a (3× 3× Kn × Kn+1) filter) is SE(3) equivariant if

κ · [π1(g)f ] = π2(g)[κ · f ]

They prove that the space of κ is a subspace of 3D convolutional
filter
They prove the space of κ is linear, and can be represented as a
linear combination of a set of basic filters
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Representation of a group

ρ is an invertible n × n matrix parameterized by a group element
(e.g. rotation r).
For ρ to be called a representation of G, it has to satisfy
ρ(gg′) = ρ(g)ρ(g′), where gg′ denotes the composition of two
transformations g,g′ ∈ G, and ρ(g)ρ(g′) denotes matrix
multiplication.
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A concrete example

3× 3 matrix A
Transformation: A 7→ R(r)AR(r)T , R(r): 3× 3 rotation
Kronecker / tensor product:
vec(A) 7→ [R(r)⊗ R(r)] vec(A) ≡ ρ(r) vec(A).
ρ(r) is a 9-dimensional representation of SO(3)
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Decomposition of ρ(r)

ρ(r) = Q−1

[
2⊕

l=0

Dl(r)

]
Q, (1)

The symmetric and anti-symmetric parts of A remain symmetric
and anti-symmetric respectively under rotations.
The 6-dimensional space can be further broken down, because
scalar matrices Aij = αδij and traceless symmetric matrices also
transform independently. Thus a rank-2 tensor decomposes into
representations of dimension 1 (trace), 3 (anti-symmetric part), and
5 (traceless symmetric part).
In representation-theoretic terms, we have reduced the
9-dimensional representation ρ into irreducible representations of
dimension 1,3 and 5.
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Steerable filter κ

A filter κ is rotation-steerable if
it is a normal convolution (cross correlation).
And satisfying the constraint

κ(rx) = ρ2(r)κ(x)ρ1(r)−1. (2)
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Steerable filter space

Steerable filters form a subspace of the 3D convolution space
the Kn-dimensional feature vectors f (x) = ⊕i f i(x) consist of
irreducible features f i(x) of dimension 2 lin + 1.
κ : R3 → RKn+1×Kn splits into blocks κjl : R3 → R(2j+1)×(2l+1)

mapping between irreducible features.
κjl(rx) = Dj(r)κjl(x)Dl(r)−1. (3)

Credit: Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, Taco Cohen (shortinst)3D Steerable CNNs: Learning Rotationally Equaivariant Features in Volumetric DataPresenter: Fuwen Tan https://qdata.github.io/deep2Read 12 / 19

https://qdata.github.io/deep2Read


Basic matrix of the steerable filter space

vec(κjl(rx)) = [Dj ⊗ Dl ](r) vec(κjl(x)), (4)

[Dj ⊗ Dl ](r) = QT
[⊕j+l

J=|j−l|
DJ(r)

]
Q (5)

Thus, we can change the basis to ηjl(x) := Q vec(κjl(x)) such that
constraint 3 becomes

ηjl(rx) =
[⊕j+l

J=|j−l|
DJ(r)

]
ηjl(x). (6)

ηjl(x) =
⊕j+l

J=|j−l|
ηjl,J(x) , ηjl,J(rx) = DJ(r)ηjl,J(x) (7)
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Basic matrix of the steerable filter space

A famous equation for which the unique and complete solution is
well-known to be given by the spherical harmonics
Y J(x) = (Y J

−J(x), . . . ,Y
J
J (x)) ∈ R2J+1.

ηjl,Jm(x) = ϕm(‖x‖)Y J(x/‖x‖) (8)

ϕm(‖x‖) = exp (−1
2
(‖x‖ −m)2/σ2) (9)
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Tetris recognition proposed in [9]

Task: classifying 8 kinds of Tetris blocks (voxel grids), in a fixed
orientation
Model: 4-layer 3D Steerable CNN vs conventional CNN
: Performance: 99± 2% vs 27± 7%
It seems [9] did NOT present the result on the task.
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3D model classification

micro macro total
P@R R@N mAP P@R R@N mAP score input size params

Furuya [5] 0.814 0.683 0.656 0.607 0.539 0.476 1.13 126× 103 8.4M
Esteves [4] 0.717 0.737 0.685 0.450 0.550 0.444 1.13 2 × 642 0.5M
Tatsuma [8] 0.705 0.769 0.696 0.424 0.563 0.418 1.11 38× 2242 3M
Ours 0.704 0.706 0.661 0.490 0.549 0.449 1.11 1× 643 142k
Cohen [3] 0.701 0.711 0.676 - - - - 6× 1282 1.4M
Zhou [1] 0.660 0.650 0.567 0.443 0.508 0.406 0.97 50× 2242 36M
Kanezaki [6] 0.655 0.652 0.606 0.372 0.393 0.327 0.93 - 61M
Deng [7] 0.418 0.717 0.540 0.122 0.667 0.339 0.85 - 138M

Table: Results of the SHREC17 experiment.

Task: classifying 55 classes of 64 x 64 x 64 voxel grids
Model: 8-layer 3D Steerable CNN
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Amino acid environments

Baseline: either [2] or [10]
Model: the same dimension in each layer as the baseline but with
3D Steerable CNN
: Performance: 58% vs 56%
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CATH: Protein structure classification

Figure: Accuracy on the CATH test set as a function of increasing reduction in
training set size.

Baseline: ResNet34 with half as many channels as the original
(15878764 parameters)
Model: the same dimension in each layer as the baseline but with
3D Steerable CNN (143560 parameters)
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Conclusion

Not for broad audience
The math looks solid
Missing justifications of the engineering choices
Demonstrate on limited domains
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