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Community Detection
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Class of node classification tasks that attempt to discover a clustered,
segmented structure within a graph.
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Problem Setup

e Given: input graph G = (V,E)

@ Goal: partition V into C groups. l.e. classify each node into one of
C classes: y: V — {1,C}

@ We assume that a training set {(G¢, yt)}+<T is given, which we use to
learn a model y = (G, 0) trained by minimizing

Z£ (Gt,0),yt) -

t<T
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© Power Graph Neural Networks
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Graph Operators

Given vertices matrix x € RIVI*2 we consider the following graph intrinsic
linear operators that act locally on x
o adjacency operator A is the linear map given by the adjacency
matrix A;j = 1iff (i,j) € E.
o degree operator is the linear map D : F — DF where
(Dx); := deg(i) - x; , D(x) = diag(Al)x
e power graph adjacency operator A; = min(l,A2j) encodes 2/-hop
neighborhoods into a binary graph

o J-th powers of A encode J-hop neighborhoods of each node, and allow
us to combine and aggregate local information at different scales
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Graph Neural Networks Using a Family of Graph Operators

Given a family of operators 73 = {/,D, A, Ap),..., A} on graph
G, we define a multiscale GNN for each j € V:

k+1>—a< > ot m) (1)

0,eF}
f(kJrl) = Z O,'X(k)e,' (2)
O;G]'—‘AI
(k1) — [Z(k—&-l)’?(k-i-l)} e RIVIxbes (3)

bty . .
where 0; € RPX=5" are trainable parameters, and o is a ReLU
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e Line Graphs and Non-Backtracking Operator
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Non-Backtracking Operator

@ Previous methods (Krzakala et al., 2013) showed an improvement on
spectral methods for community detection by using the
non-backtracking operator

@ This operator is defined over the edges of the graph and allows a
directed flow of information even when the original graph is undirected
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@ The line graph L(G) = (Vy, EL) is the graph representing the edge
adjacency structure of undirected graph G = (V, E)

@ Vertices V| of L(G) are the ordered edges in E:
Vi=A{(i =) (1,J) € E} UL = 1); (i,J) € E}, so [Vi| = 2|E]
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Non-Backtracking Operator

@ The non-backtracking operator on the line graph is represented by
B € R2IEIX2IEl encoding the edge adjacency structure. Two nodes in L(G)
are connected if:
B 1 ifj=/andj #1i,
(=)= = 0 otherwise.

Enables the propagation of directed information through the graph
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GNN on Line Graphs with Non-Backtracking Operator

@ A natural extension of the GNN architecture is thus to consider a
second GNN defined on L(G), generated by the corresponding
non-backtracking operators B(;) and degree Dg = diag(B1)

o This defines edge features that are diffused and updated according to
the edge adjacency of G
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GNN on Line Graphs with Non-Backtracking Operator

@ Given graph operators Fa = {I, D,AAw),--- ,A(J)} and line graph
operators Fg = {/g, Dg, B, B2y, ..., By}

@ Edge and node features are combined at each layer using edge indicator
matrices Pm, Pd € {0, 1}/VI*2IEl defined as Pm; (;,jy = 1, Pd; ;) = 1,
Pd; i) = 1, Pd;j i-j) = —1 and 0 otherwise. Fag = {Pm,Pq}

xUH) = ¢ Z 0ixNg; + Z 0/y®y; (4)
_O/‘E-FA OJ/G}—AB
T
y(k+1) -0 Z O,”y(")ef’ + Z (OJ/) X(k+1)9j'// (5)
_OINGJ:B OJ{G}—AB

where 0;, 01,07 € RP>b1 and 7 € RP+1Xbis1 gre the learnable
parameters. x(©) = deg(A) and y(©) = deg(B)
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Line Graph Neural Networks (LGNNs)

EON e
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Relationship between LGNN and edge feature learning

approaches

@ LGNNs: learning directed edge features from an undirected graph
o If each node i contains two distinct sets of features xs(/) and x,(f),
the non-backtracking operator constructs edge features from node

features while preserving orientation

@ GATs (Velickovic et. al.) and other similar models learn directed edge
features on undirected graphs using stochastic matrices as adjacencies
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@ Loss Function
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Loss Function

No overlap in communities

o Let C={1,...,C} denote the possible community labelings that
each node can take. y € CV is the ground truth community structure

@ Softmax at each node’s output gives the conditional probability that
node i belongs to community c: o;c = p(y; = c |0, G)

@ Since community structure is defined up to global permutations of the
labels, we can define a loss function w.r.t a given graph instance as:

0(0) = inf —Zlogo,w(y,), (6)

TESe

where S¢ denotes the permutation group of C elements. This is
essentially taking the the cross entropy loss minimized over all
possible permutations of S¢.
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Loss Function

Overlap in communities (nodes can belong to multiple communities)

o If communities may overlap, we can enlarge C to include subsets of
communities and define the permutation group accordingly

@ For example, if there are two overlapping communities, we let C =
{{1},{2},{1,2}} and only allow the permutation between 1 and 2
when computing the loss function
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© Experiments
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@ We present experiments on synthetic community detection, as well as
real-world detection

@ Performance measure is the overlap between predicted (y) and true

labels (y), which quantifies how much better than random guessing a
predicted labelling is

o The overlap is given by (% >4 Oy(u),9(u)) Where § is the Kronecker delta
function, and the labels are defined up to global permutation
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Binary Stochastic Block Model

@ Random graph model with planted community structure.

@ Assign |V| = n nodes to C classes at random with y : V — {1, C}
and draw an edge connecting any two vertices u, v independently at
random with probability p if y(v) = y(u), and with probability g
otherwise

@ The sparse binary case C = 2 when p,q ~ 1/n is well understood and
provides an initial platform to compare the GNN against provably
optimal recovery algorithms
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BSM Results
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Figure 3. Binary associative SBM detection (C' = 2, p > q). X-axis corresponds to SNR, and Y-axis to overlap
between the prediction and the ground truth.
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Real Datasets from SNAP

train/test Avg IVl | AvgEl GNN | LGNN | LGNN-S | GAT | AGMfit
Amazon | 805/142 60 161 Avg. 097 | 0.96 0.97 0.95 | 0.90
Std. Dev. | 0.12 [ 0.13 0.11 0.13 [ 0.13
DBLP 4163/675 26 77 Avg. 090 | 0.90 0.89 0.88 | 0.79
Std. Dev. | 0.13 [ 0.13 0.13 0.13 | 0.18
Youtube | 20000/1242 | 93 201 Avg. 091 | 0.92 0.91 090 | 0.59
Std. Dev. | 0.11 | 0.11 0.11 0.13 | 0.16

Table 2: Comparison of the node classification accuracy by different models on the three SNAP datasets. Note
that the average accuracy was computed graph-wise with each graph weighted by its size, while the standard
deviation was computed graph-wise with equal weights among the graphs.
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Conclusion

@ Propose modifications to the GNN architecture, which allow it to
exploit edge adjacency information, by incorporating the
non-backtracking operator of the graph

@ Con: didn't justify the use of line graphs and the non-backtracking
operator enough

@ Con: Assumes fixed number of communities
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