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Probabilistic Graphical Models(PGMs)

e Given x € RP, joint probability p(x)

e Simplify joint p(x) into a factorization based on conditional
independence defined by a graph structure.
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Factor Graphs

@ Factorization of the joint probability distribution for more efficient

computations
@ bipartite graph: two types of nodes, edges connect different node

types
@ Given a factorization:
g(X1, X0, X3) = A (X1)h(X1, Xo) (X1, X2)fa(Xa, X3)
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Tasks for PGMs: Inference

Inference Task: Given a graphical model p(x), find marginal probability
pi(xi)
pi(xi) = >y /x P(X)
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Maximum A Posteriori(MAP) Inference: xx = argmax,p(x), Finding the
most probable state
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Belief Propagation

Belief propagation operates on these factor graphs by constructing

messages [jq and fi—; that are passed between variable(i) and
factor(a) nodes:

Ha—)i(xi) = Z d}a(xa) H /«U—)a(Xj) (1)

Xa\X,‘ JEN, \I
/’LI*)C%(XI = H ,"LB—)I XI (2)
BeN\a

the estimated marginal joint probability of a factor o, namely B,(x,), is
given by

Ba(xe) = S a(xa) [] ialx) G

iENa
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Belief Propagation

Issues:
@ Exact Inference on tree graphs, but not on graphs with cycles

@ Update Steps may not have closed form solutions
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Special Case: Binary Markov Random Field

variables x € {+1, —1}!V

p(x):%exp(b-x—i—x-J-x) (4)

singleton factor: v;(x;) = ePi
pairwise factors: 1 j(x;, x;) = e’
Goal: find p(x;)

J is a symmetric matrix
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Belief Propagation on Binary Markov Fields

Belief propagation updates messages (;; from i to j according to

JII bl
it = X TT ) €

keN;\j

~—

estimated marginals by p;(x;) = %ebix" [Tken; 1ki(xi)
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Proposed GNN architecture

m{" = M(h}, ;) (6)

t+1 Z mJt:Z} (7)
JEN;

ht+1 u(ht t+l) (8)
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Proposed Model: Message-GNN

Factor graph
GNN node h,

4

message node j;;

@ Convert all messages fi;_,; into a node in a GNN h;_,;
@ Two GNN nodes v and w are connected if they correspond to
messages fj_; and fij_
@ message from v; to v; is computed by mfi} = MY kenj Moo &)
o update its hidden state by h{"> = 2/(h}_;, m{*7).
T

» 2 D
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Proposed Model: node-GNN

Factor graph C g ;

GNN node hy,

variable node p;

@ No representation for factor nodes

@ information about interactions in €
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GNN for inference and MAP

@ minimize cross entropy loss L(p, ) = — ), qilogpi(xi)
o For MAP: delta function g; = dx, x

@ For Marginal Inference: g; enumeration of ground truth
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Experimental Design

@ generalization under 4 conditions

@ to unseen graphs of the same structure (I, 1),

@ and to completely different random graphs (lll, IV).

@ These graphs may be the same size (1, Ill) or larger (11, 1V).

structured random
n=29 [ 11
n=16 1 Vv
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Experimental Set up

{?Se path cycle ladder grid "’55'@,’ barbell lollipop ~ wheel bipartite tripartite complete
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node

@ train on 100 graphical models of 13 classical types
e Sample J; = J;i ~ N(0,1)
o sample biases b; ~ N (0, (1/4)?)
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Within Set Generalization

@ test graphs had the same size and structure as training graphs
@ but the values of singleton and edge potentials differed
@ most notable performance difference between loopy graphs
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Out of Set Generalization

@ Train on same graphs
@ Test on bigger graphs

@ Metric: the average Kullback-Leibler divergence (D [pi(xi)||Bi(xi)])
across the entire set of test graphs with the small and large number

of nodes.
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Out of Set Generalization: different structure

@ connected random Erdos Renyi graphs G, g,
@ changed connectivity by increasing the edge probability from q = 0.1
(sparse) to 0.9 (dense)
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Convergence of Inference Dynamics

@ How node states change over time

o [|hy — h e,
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MAP Estimation

@ xx = argmaxp(x)
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Conclusions

@ limited testing: binary markov random field models only

@ relatively small graphs

@ A combination of NNs approximation power to incorporate non linear
structure of inference problems
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