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Point Cloud Representation of 3D Shape

X ={xq, - ,xp} CRF (1)

Figure: Point Cloud representation of a plane. Each point vector may encode
multiple attributes, e.g. 3D coordinate, surface normal, color, etc.
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Figure: Class-specific part segmentation
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EdgeConv
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Figure: Edge Convolution: a symmetry function for the two vertices.
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How to define E (the edge set)?

@ k-nn in the feature space (x; € RF)
@ the main distinction from previous works

@ each layer has a different graph, which will change after each
training iteration
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Dynamic Graph CNNs
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Figure: Overview
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Point Cloud Transformation

@ Proposed in PointNet [6]

@ Align the local neighborhood of a point to a canonical space by
applying an estimated 3x3 matrix

@ Similar with the spatial transformer network in 2D
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point cloud transform
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Shape recognition: implementation

o K=20
@ Each EdgeConv block has a shared edge function hy

@ Short-cut connections for multi-scale feature aggregations (not
clear)

@ RelLU+BatchNorm after each layer
@ 0.5 Dropout rate for the last two fc layers

@ A variant version (Baseline): no point cloud transformer and using
fixed graph
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Shape recognition: experiment

@ Dataset: ModelNet40 [12]
@ 9843/2468 CAD shapes
@ 40 categories
e 1024 points sampled for each shape and normalized to the unit
sphere
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Shape recognition: results

MEAN OVERALL

CLASS ACCURACY ACCURACY
3DSHAPENETS [12] 77.3 84.7
VOXNET [5] 83.0 85.9
SUBVOLUME [7] 86.0 89.2
ECC [10] 83.2 87.4
POINTNET [6] 86.0 89.2
POINTNET++ [8] - 90.7
KD-NET (DEPTH 10) [4] - 90.6
KD-NET (DEPTH 15) [4] - 91.8
OURS (BASELINE) 88.8 91.2
OURS 90.2 92.2

Table: Classification results on ModelNet40.
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Shape recognition: model complexity

MODEL SIZE(MB) FORWARD TIME(MS) ACCURACY(%)

POINTNET (BASELINE) 9.4 11.6 87.1
POINTNET 40 25.3 89.2
POINTNET++ 12 163.2 90.7
OURS (BASELINE) 11 29.7 91.2
OuURs 21 94.6 92.2

Table: Complexity, forward time and accuracy of different models
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Shape recognition: ablation study

@ Centralization: hg(X;,X; — X;) VS hp(X;, X;)

CENT DYN XFORM MEAN CLASS ACCURACY(%) OVERALL ACCURACY(%)

X 88.8 91.2
X X 88.8 91.5
X X 89.6 91.9

X X 89.8 91.9
X X X 90.2 92.2

Table: Effectiveness of different components. CENT denotes centralization,
DYN denotes dynamical graph recomputation, and XFORM denotes the use
of a spatial transformer.
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Shape recognition: ablation study

Accuracy (%)
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Shape recognition: ablation study

NUMBER OF NEAREST NEIGHBORS (K) MEAN OVERALL
CLASS ACCURACY(%) ACCURACY(%)

5 88.0 90.5

10 88.8 91.4

20 90.2 92.2

40 89.2 91.7

Table: Results of our model with different numbers of nearest neighbors.
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Part segmentation: implementation

@ K=30

@ similar with the shape recognition model
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Part segmentation: experiment

@ Dataset: ShapeNet part dataset [11]
o 16881 3D shapes
o splits defined in [2]
o 16 categories
e 50 parts in total
@ 2048 points sampled for each shape
@ evalution metric: loU on points
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Part segmentation: results

MEAN | AREO BAG CAP CAR CHAIR EAR  GUITAR KNIFE LAMP LAPTOP MOTOR MUG PISTOL ROCKET SKATE TABLE | WINNING
PHONE BOARD CATEGORIES

# SHAPES 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

POINTNET [6] 83.7 | 83.4 787 825 749 896 73.0 915 859 80.8 953 652 930 81.2 579 728 80.6 1
POINTNET++ [8] 85.1 | 824 790 87.7 773 908 718 910 859 83.7 953 71.6 941 813 587 764 826 5
K-NET [4] 82.3 | 80.1 746 743 703 886 735 902 87.2 81.0 949 574 867 781 518  69.9 80.3 0
LOCALFEATURENET[9] | 84.3 | 86.1 73.0 54.9 77.4 888 550 90.6 865 752 961 573 917 831 539 725 838 5
Ouns 851 | 842 837 844 771 90.9 785 915 87.3 829 960 678 933 826 597 755 82.0 6

Table: Part segmentation results on ShapeNet part dataset. Metric is
mloU(%) on points.
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Part segmentation: ablation study
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Figure: Left: The mean loU (%) improves when the ratio of kept points
increases. Points are dropped from one of six sides (top, bottom, left, right,
front and back) randomly during evaluation process. Right: Part
segmentation results on partial data. Points on each row are dropped from
the same side. The keep ratio is shown below the bottom row. Note that the
segmentation results of turbines are improved when more points are included.
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Indoor scene segmentation: experiment

@ Dataset: S3DIS [1]

e 6 indoor areas

272 rooms in total

16 semantica categories

9D feature vector: XYZ, normalized XYZ, color

4096 points sampled for each shape during training, all points are
used during testing

evalution metric: loU on points
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Indoor scene segmentation: results

MEAN OVERALL

loU ACCURACY
POINTNET (BASELINE) [6] 20.1 53.2
POINTNET [6] 47.6 78.5
MS + CU(2) [3] 47.8 79.2
G + RCU [3] 49.7 81.1
OuRs 56.1 84.1

Table: 3D semantic segmentation results on S3DIS. MS+CU for multi-scale
block features with consolidation units; G+RCU for the grid-blocks with
recurrent consolidation Units.
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Conclusion

@ Simple, effective, maybe not very efficient
@ The performance looked good at the submitted time (Jan. 2018)
@ Not in good shape yet
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