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Fraud Detection

Malicious Account Detection:
To determine if an account is owned by adversary or normal user.
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Fraud Detection

Malicious Account Detection:
To determine if an account is owned by adversary or normal user.

Proposed solution:
Graph Embeddings for Malicious accounts (GEM)
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Intuition

Patterns observed from malicious accounts.

@ Device aggregation
Adversary logins to many accounts on one device.
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Device Aggregation
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Figure: Left: Normal; Right: Malicious.
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Intuition

Patterns observed from malicious accounts.

@ Device aggregation
Adversary logins to many accounts on one device.

@ Activity aggregation
Adversary's accounts behave in batches.
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Activity Aggregation
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Figure: Left: Normal; Right: Malicious.
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Heterogeneous Graph Construction

e Vertices: 1) Account vertices; 2) Device vertices.

o Edges: Account is active on Device.

Represented as adjacency matrix A ¢ {0, 1}V:V,
A;j = 1: account i active on device j
Al@): subgraph ignoring edges to non-type-d devices.

Features of Vertices: X € RV:P+P|+200
Account vertices only: p time slots, with activity counts;
p =7 X 24 = 168 slots, with activity counts.
Device vertices only: one hot |D|.
6 types of devices.
Account vertices only: 200 demographics features.
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Broad Device Concept

Six device types.
o Four Hardware ID.
Phone number
WiFi MAC address
International Mobile Subscriber Identity (IMSI)
TID
Random number generated with IMSI and IMEI.

@ Two Proprietary Composite Fingerprint

o User Machine ID (UMID)
Unclear
o Alipay Device ID (APDID)
Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.
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Broad Device Concept : Attention Coefficients

Six device types.
o Four Hardware ID.
Phone number
WiFi MAC address
International Mobile Subscriber Identity (IMSI)
TID
Random number generated with IMSI and IMEI.

@ Two Proprietary Composite Fingerprint

o User Machine ID (UMID) 0.4412 <Secret Weapon>
Unclear

o Alipay Device ID (APDID)
Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.
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Broad Device Concept : Attention Coefficients

Six device types.
o Four Hardware ID.
Phone number 0.2952
WiFi MAC address
International Mobile Subscriber Identity (IMSI)
TID
Random number generated with IMSI and IMEI.

@ Two Proprietary Composite Fingerprint

o User Machine ID (UMID) 0.4412 <Secret Weapon>
Unclear

o Alipay Device ID (APDID)
Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.
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Broad Device Concept : Attention Coefficients

Six device types.
o Four Hardware ID.
Phone number 0.2952
WiFi MAC address 0.13
International Mobile Subscriber Identity (IMSI)
TID
Random number generated with IMSI and IMEI.

@ Two Proprietary Composite Fingerprint

o User Machine ID (UMID) 0.4412 <Secret Weapon>
Unclear

o Alipay Device ID (APDID)
Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.
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Broad Device Concept : Attention Coefficients

Six device types.
o Four Hardware ID.
Phone number 0.2952
WiFi MAC address 0.13
International Mobile Subscriber Identity (IMSI)
TID
Random number generated with IMSI and IMEI.

@ Two Proprietary Composite Fingerprint

o User Machine ID (UMID) 0.4412 <Secret Weapon>
Unclear

o Alipay Device ID (APDID) 0.0142
Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.
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Broad Device Concept : Attention Coefficients

Six device types.
o Four Hardware ID.
Phone number 0.2952
WiFi MAC address 0.13
International Mobile Subscriber Identity (IMSI)
TID 0.0125
Random number generated with IMSI and IMEI.

@ Two Proprietary Composite Fingerprint

o User Machine ID (UMID) 0.4412 <Secret Weapon>
Unclear

o Alipay Device ID (APDID) 0.0142
Consider IMEI, IMSI, CPU, Bluetooth ADDR, ROM.
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Models

Goal: learn embedding matrix H (it" row is h; of vertex i)

HO 0
for t=1,....T
1 D
H® — o(X - W+ | ;A(d) CHED L vy)

Embeddings at t layer: H(t) ¢ RV:K
Features: X € RVPH Pl fed into each layer, ResNet alike.
Trainable parameters: {V,} € Rk*k;

W € RP*K(P = p+ |D|), shared among subgraphs.
Adjacency matrix: A € {0,1}V'N
Hyper-parameters: Embedding size k;

#hidden layers T (#hops a vertex needs to look at)
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Attention Mechanism

T D
o = [041,...,04‘@‘] ER‘ |
expay

SOftmaX(Oéd) = m
i i

HO « o(X - W+ softmax(ag) - A9 - HIEED . vy)
deD
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Logistic Regression Classifier

No
min LW, {V4},u) == logo(yi-(u'h; 1
W, (W,{V4}, ) Z go(yi-(u hi)) (1)
Whereazm,uERk

Expectation Maximization style
e-step: compute embeddings based on W, {Vy}.
m-step: optimize u, while freezing embeddings.
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Datasets

4 consecutive weeks of data from Alipay.
8M vertices, 10M edges

1.7M train labels, 0.2M test labels (#account vertices?)
374 features

374 features for each vertex:

[Account Only] p =7 x 24 = 168 slots, with activity counts.
[Device Only] 6 types of devices.
[Account Only] 200 demographics features (yet another secret weapon?)

Train with first 6 days; test with the last day.
4 isolated experiments.
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Comparison Methods

Baseline
@ Connected Subgraph
o GBDT + Graph
o GBDT + Node2Vec
@ Graph Convolutional Network
Variants of this work
e Graph Embeddings for Malicious accounts (GEM)
o GEM-attention
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Result - F-1 Score

week1 week2 week3 week4

Connected Subgraphs  0.5033  0.5567 0.58 0.5421

GBDT+Graph 0.7423 0.7598 0.7693  0.6639
GBDT+Node2Vec 0.741 0.7571 0.769 0.6626
GCN 0.7729  0.7757 0.7957  0.6919

GEM (Ours) 0.7992  0.8066 0.8191 0.718

GEM-attention (Ours) 0.8165 0.8133 0.8244 0.7344

Figure: F-1 Score
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Result - AUC

week1l week2 week3 week4

Connected Subgraphs 0.6689  0.6692  0.665  0.6938

GBDT+Graph 0.8878 0.8835 0.8707 0.8778

GBDT+Node2Vec 0.8884  0.883 0.8711  0.8773
GCN 0.8995 0.8932  0.8922 0.881

GEM (Ours) 0.9159 09238 09193  0.9082

GEM-attention (Ours) 0.9364 0.9293 0.9259 0.9155

Figure: AUC
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Online Result

98% precision over 89% of rule-based system.
Recall unknown.
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Precision-Recall Curves on Week 4

[Guess: Recall at 98% precision is about 0.5%.]

c
.2
0
[}
(7] ) R
& 0.41 — GEM-attention ~— —TTTT S 8
—————— Connected Subgraph =
0.2 ——- GBDT+Graph
Sl = GBDT+Node2Vec
GCN
0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure: Precision-Recall Curves on Week 4.
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Conclusion

Novel graph neural network model for heterogeneous graph.

Exploit two weaknesses of adversary:
Device aggregation & Activity aggregation.

Detect 10K malicious accounts daily at Alipay.

Future work: beyond adjacency matrix.
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Discussions

@ Not reproducible.
No open dataset or open source code.
Lack details of secret weapons.

o Adaptive adversary.
Fake Hardware ID by hijacking system APIs on rooted devices.
Malicious account can be more active.
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