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Introduction

@ What are Adversarial Attacks?
@ Success of Adversarial Attacks
o Images
o Text
e Graphs? Adversaries in graph-based domains.
@ Adversarial Attacks on Graph & Node Classification by changing
graph structured (edges).
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Figure: Adversarial Attack Example. Carefully crafted image is added to the
input to make the model misclassify it.

Author: Hanjun Dai Adversarial Attacks on Graph Structured DatPresenter: Faizan Ahmad https://qdata.g


https://qdata.github.io/deep2Read

Basic Idea
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Figure: Small edge perturbations of the graph structure lead to misclassification
of the target

@ Edge modification achieved by
© Reinforcement Learning (Q-learning)
@ Random Modifications
© Gradient based attack
© Genetic Algorithms
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Why Attacks on Graphs?

o Large body of work on adversarial attacks for Images and Text

DeepFool (Moosavi et al. [1])

Adversarial Examples in Physical World (Kurakin et al. [2])
Hotflip (Ebrahimi et al. [3])

Plenty more..

@ No work on adversarial attacks for graphs
@ Many new challenges

o Discrete Domain
o Network Effects
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Task Setup

Graph and Node Classification

@ Input Graphs Gy, Gy, ...,G, € G
e G=(V,E)
e V is the set of nodes
e E is the set of edges
o Nodes and edges can have featured denoted by x(v) € RP" and
w(e) € RP: respectively

@ Graph classification (inductive)
o Node classification ¢; € V (transductive)

@ GNN family models as:

a8 = hO ({w(u, v), x(u), 8 Ve x(v), uk)

Author: Hanjun Dai Adversarial Attacks on Graph Structured DatPresenter: Faizan Ahmad https://qdata.g


https://qdata.github.io/deep2Read

Related Work

@ Graph Neural Networks

e Node Embeddings/Classification [4]
o Graph Classification [5]

@ Adversarial Attacks

o Evasion Attacks [1]
o Poisoning Attacks [6]

@ Adversarial Attacks on Graphs

o Using Greedy Approximation (Last Time)
e Via Reinforcement Learning (This Work)
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Attack Model

Problem Statement

Original Graph G = (A, X)
Perturbed Graph G = (A, X)

Optimization problem becomes:
maxéf(é,c) #y
s.t.G =g(f,(G,c,y))
1(G,G,c)=1

| is equivalence estimator (how similar are two graphs)
I(G,G,c)=|(E—E)U(E—E)|<m
E C N(G,b)
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Attack

Reinforcement Learning

@ Attack is modeled as a markov decision process

e Action a: Add or delete edges
o State s: Modified graph
o Reward r: Whether the classifier is fooled

o -1if no, 1 if yes
@ Reward can be discrete, or continuous.
e Sample trajectory: (s1,a1, M, .-y Sms @m) ms Sm+1)

@ Q-learning for optimization
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Attack

Q-learning in Reinforcement Learning

Bellman optimality equation to pick the best action using @ function

Q*(st, ar) = r(st, ar) + Amaxz Q*(st41,a")
Q*(st, ar) = Immediate Reward + Expected Future Reward

Implicitly suggest greedy policy

For efficiency, decompose into two Q functions
X 1 X 1) (2
Q¥ (st. af) = max, Q% (se. 2, a(”)

Q% (st, ag ) a2 )) = r(st,ar + (agl), 352)) + maxa(ti)lQl*(st, agr)l)
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Attack

Parameterization of Q*

@ Final Q function to learn

N
maxg Z Q" (atlst; 9)[f(GAa c)]

i=0

@ How to learn? Use GNNs
QY (s, oY) = W&)J(ng)[uagl), u(se)])

Q* (st 2t a”) = WG o (WG lu . u o, u(so)])
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Attack

Gradient Based White Box

@ Use a formulation of GNNs that allow gradients computations

S =" (- fa,, [wuv)w(u) ]}ueN’(v

{au’,ﬂ [’LU(U/ U) ( ’),[,Lu, ]}u’&N(v)a
o) ud ) ke {12, K} A7)

@ Find gradients for each edge and do gradient ascent

oL LT O

aau,v =1 HE aau,v
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Attack

Gradient Based White Box
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Figure 2. Tllustration of graph structure gradient attack. This
white-box attack adds/deletes the edges with maximum gradient
(with respect to o) magnitudes.
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Attack

Genetic Algorithms
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Figure 3. llustration of attack using genetic algorithm. The
population evolves with selection, crossover and mutation
operations. Fitness is measured by the loss function.
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Evaluation and Results

Testbed

@ Two tasks
o Graph Level Attack

o Create 15K graphs using Erdos-Renyi graph model
o Predict number of connected components (1,2,3)

o Node Level Attack
o Citation networks, pubmed, finance

Table 3. Statistics of the graphs used for node classification.

Dataset Nodes Edges Classes  Train/Test I/Test I
Citeseer 3,327 4,732 6 120/1,000/500
Cora 2,708 5,429 7 140/1,000/500
Pubmed 19,717 44,338 3 60/1,000/500
Finance 2,382,980 8,101,757 2 317,041/812/800

Figure: Datasets used
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Evaluation and Results

Attack Modes

o Multiple attack modes
o White Box Attack (WBA)
o Practical Black Box Attack (PBA)
o Only label is available PBA-D
o Confidence score is available PBA-C

e Restrict BA (RBA)
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Evaluation and Results

Results

attack test set I 15-20 nodes
Settings  Methods K=2 K=3 K=4 K=5
~ (unattacked) 93.20% 98.20% 98.87%  99.07%
RBA RandSampling  78.73% 92.27% 95.13% 97.67%
WBA GradArgmax 69.47% 64.60% 95.80% 97.67%
PBA-C  GeneticAlg 39.87% 39.07% 65.33% 85.87%
PBA-D  RL-S2V 4293% 4193% 70.20% 91.27%

Figure: Results for attacks on graph classification
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Evaluation and Results

Results

Method Citeseer Cora Pubmed Finance
(unattacked) 71.60% 81.00% 79.90%  88.67%
RBA, RandSampling  67.60%  78.50% 79.00% 87.44%
WBA, GradArgmax  63.00% 71.30% 72.4%  86.33%
PBA-C, GeneticAlg 63.70% 71.20% 72.30%  85.96%
PBA-D, RL-S2V 62.70% 71.20% 72.80%  85.43%
Exhaust 62.50% 70.70% 71.80%  85.22%

Figure: Results for attacks on node classification
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Evaluation and Results

Attacks Visualization

(a) pred =2 (b) pred =1 (c) pred =2

Figure 6. Attack solutions proposed by GradArgmax on node
classification problem. Attacked node is colored orange. Nodes
from the same class as the attacked node are marked black,
otherwise white. Target classifier is GCN with K =2.

Figure: Attacks proposed by gradient based method
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Evaluation and Results

Adversarial Training

Table 5. Results after adversarial training by random edge drop.
Method Citeseer Cora Pubmed Finance

(unattacked) 71.30% 81.70% 79.50%  88.55%
RBA, RandSampling  67.70% 79.20% 78.20% 87.44%
WBA, GradArgmax 63.90% 72.50% 72.40%  87.32%
PBA-C, GeneticAlg 64.60% 72.60% 72.50%  86.45%
PBA-D, RL-S2V 63.90% 72.80% 72.90%  85.80%

Figure: Results after adversarial training
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Genetic algorithms work well on discrete domains

Models trained on large real world datasets are very still hard to
attack

Simple adversarial training methods don't help

Structure can be enough to mount adversarial attacks (no feature
modification in nodes)
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