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Introduction

@ What are Adversarial Attacks?
@ Success of Adversarial Attacks
o Images
o Text
e Graphs? Adversaries in graph-based domains.
@ Adversarial Attacks on Node Classification by changing:
o Graph Structure
o Node Features

“panda” “gibbon™

57.7% confidence 99.3% confidence

Figure: Adversarial Attack Example. Carefully crafted image is added to the
input to make the model misclassify it.
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Basic Idea
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Figure: Small perturbations of the graph structure or node features lead to
misclassification of the target
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Attacker Node: Manipulated nodes

Target Node: Nodes that we want to misclassify
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Why Attacks on Graphs?

@ Large body of work on adversarial attacks for Images and Text
DeepFool (Moosavi et al. [1])

Adversarial Examples in Physical World (Kurakin et al. [2])
Hotflip (Ebrahimi et al. [3])

Plenty more..

@ No work on adversarial attacks for graphs
@ Many new challenges

o Discrete Domain
e Transductive Learning Setting
o Network Effects
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Task Setup

Node Classification

@ Semi-supervised Node Classification via Binary Node Features
e Attributed Graph G = (A, X)

o Adjacency Matrix representing edges A € {1,0}"*N

o Feature Matrix representing D dimensional node features
X €{0,1}\P

o Node-ids V ={1,2,.... N}

o Feature-ids F = {1,2,..., D}

o Given: A subset V| C V of labeled nodes with labels C = {1,..cx}
o Task: Learng:V = C
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Graph Convolutional Networks Overview (GCN) [4]

o Node classification is done via Kipf et al. [4]

e Learns node-level output features
o Graph level features can be obtained via aggregating

o A hidden layer / + 1 is defined as H(’+1) = f(H"), A) where H®) = X
o Simple GCN propagation rule is f(H(), A) = (A H(’) w)

e A is not normalized
o No self-loops

@ Proposed fixes in [4]:

F(HD, A) = o(D~Y2ADY2HO W) (1)
A=A+ 2)
Z= fe(A,X) = SOftmaX(AJ(AXW(l))W(2)) (3)
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Related Work

@ Graph Neural Networks

o Node Embeddings/Classification [5]
o Graph Classification [6]

@ Adversarial Attacks

o Evasion Attacks [1]
e Poisoning Attacks [7]

@ Adversarial Attacks on Graphs

o Using Greedy Approximation (This Work)
o Via Reinforcement Learning [8]
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Attack Model

Terminologies

Original Graph G(® = (A(0) x(0))
Perturbed Graph G* = (A*, X¥)

Two type of attacks:

o Structure Attacks — Changes to A(®)
o Feature Attacks — Changes to X(©)

Two types of nodes:

o Target Node vg — Node we aim to misclassify — Direct Attack
o Attacker Nodes A — Nodes we aim to manipulate — Influencer Attack
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Attack Model

Problem Statement

argmax max (InZy, c—InZy c,,)
(A*,X*)eP CFCold

subject to Z = fy«(A*, X™) with 6* = argmin L(0, A", X™)
0

@ Bi-level optimization problem.

@ P is the set of graphs with changes made under a budget A

Ped > [Xu—Xil+ D |Aw — Al <A (4)

u<v
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Attack Model

Graph Structure Preserving Perturbations

Degree distribution
Easy to tell the difference with different degree distributions

Generate perturbations that preserve power-law p(x) oc x~ behavior
of degree distribution

o Likelihood (Eq. 6) ratio test for degree distribution by approximately
estimating «

ag~1+|Dg|| Z log(d;) — log(dmin — 0.5)] ()
d,'ED(;

I(Dy) = |Dy|.log(cxx) + | Dy|.tx.logdmin + (x + 1) > _ logd;  (6)
d;eDy
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Attack Model

Feature Statistics Preserving Perturbations

Main Question: Which features can be set to 17
e Why don't we care about 0?7

Test based on feature co-occurrence

Co-occurrence graph C = (F, E).
o F is set of features.
o E C F x F denote feature co-occurrence

Probabilistic Random Walk on C
Only add feature i if for S, = {j|X,; # 0}

P15 = 757 S (1/d).Ey > 0 7)

JES,
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Generating Adversarial Graphs

Bi-level optimization for discrete case is hard

Introduce a surrogate model with linearization
o Z = softmax(A*XW)

Surrogate loss

Ls(A,X; W, vp) = CQZ%WXW]VOC — [A2XW]\per (8)

@ Loss maximization to obtain adversarial graph

argmax Ls(A*, X*; W, v) 9)
(Ax,X*x)eP

This is still intractable due to discreteness

Author: Daniel Zugner Adversarial Attacks on Neural Networks for GPresenter: Faizan Ahmad https://qdata.g


https://qdata.github.io/deep2Read

Generating Adversarial Graphs

Greedy Approximation

@ Define scoring functions for greedy approximation of Eq. 9
@ ForA*=Ateand X* =X =L f

Sstruc(67 67 VO) = LS(A*a X! W’ VO) (10)

Sfeat(fa G7 VO) = LS(A7X*; W7 VO) (11)

@ Fast computation for the scores
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Generating Adversarial Graphs

Greedy Approximation Pseudo Code

Algorithm 1: NETTACK: Adversarial attacks on graphs

Input: Graph GO (A(O), X(U)), target node vy,
attacker nodes A, modification budget A

Output: Modified Graph G' = (4, X”)

Train surrogate model on GO to obtain W // Eq. ;

t—0;

while [A) = AQ| 4+ |x() — x| < A do

Cstruct — candidate_edge_perturbations(A®), A);

e* = (u*, v*) « argmax Sssruce (e;G“), Z)[)) H
eeCstruct

Cfeat < candidate_feature_perturbations(X("), A);

ff= (", i*) « argmax speqr (f, G8), vo) ;
fe€Crear

if Serruce (e GW), vy) > sfea,(f*;G(’), vp) then

G+ G 1+ ¢ ;
else G « G() & f*;
t—t+1;

return :G®)
// Train final graph model on the corrupted graph G,

Author: Daniel Zugner Adversarial Attacks on Neural Networks for GPresenter: Faizan Ahmad https://qdata.g


https://qdata.github.io/deep2Read

Experimental Setup

Three Graph data sets; CORA-ML, CITESEET, POL. BLOGS

20% labeled nodes, 80% unlabeled
For adversarial graph generation

e Train on uncorrupted data
e Pick 40 correctly classified nodes as target nodes
e Pick 5 random neighbors as attacker nodes

@ Two corruption methods

o NETTACK (Direct Attack)

o NETTACK-IN (Influence Attack)
@ Comparison Methods

o Fast Gradient Sign Method (FGSM)
e Random Modification
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Results

Attacks on Surrogate Model
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Figure: Average surrogate

loss for increasing number of perturbations.Different

variants of our method on the Cora data. Larger is better
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Results

Attacks on Surrogate Model
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Figure: Top-10 feature perturbations per class on Cora
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Results

Transferability of Attacks

@ Generate adversarial graphs on surrogate model.

@ Test on benchmark Graph Neural Networks

e Evasion Attack: Train on clean data, keep parameters fixed, attack.
e Posioning Attack: Train on adversarial data and measure accuracy.
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(a) Evasion vs. poisoning for GCN (b) Poisoning of GCN (c) Poisoning of Column Network (d) Poisoning of DeepWalk

Figure: Results on Cora data using different attack algorithms. Clean indicates
the original data. Lower scores are better
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Results

Transferability of Poisoning Attacks

Attack Cora Citeseer Polblogs
method GCN CLN DW GCN CLN DW GCN CLN DW
Clean 090 084 082 08 076 071 093 092 0.63
NETTACK 001 0.17 0.02 0.02 0.20 0.01 0.06 0.47 0.06
FGSM 0.03 018 0.10 0.07 023 0.05 041 055 0.37
RnD 0.61 0.52 0.46 0.60 0.52 0.38 0.36 0.56 0.30
NETTACK-IN | 067  0.68 059 0.62 054 048 086 062 091

Figure: Overview of results. Smaller is better
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Results

Transferability of Poisoning Attacks
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Figure: Attacks with limited knowledge about the data
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Takeaways

Adversarial attacks on graphs are more challenging
Attacks on linear systems transfer well to non-linear systems
Limited knowledge of graph is sometimes enough to mount attacks

Greedy approaches usually work amazingly!

Black box attacks are successful too.
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Discussion

@ How to handle continuous features?
@ How to handle weighted edges?
@ What happens after adversarial training of graph neural networks?

@ What happens if we apply the greedy approximation on non-linear
model?
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