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e What kind of geometric structure found in images/text/etc exploited
by CNNs

@ How to use this universal property on non euclidean domains
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Examples of non euclidean domains
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Some Distinctions?

@ Domain Structure/Data on a Domain
o Fixed Graph vs Varying Graph

@ Known Graph vs Unknown Graph
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Basics of Euclidean CNNs

@ Translational Invariance

e Compositionality deformation stability: localization in space,!

@ constant features O(1) and O(n) computation time

! “each feature extraction in our network is followed by an additional layer which

performs a local averaging and a sub-sampling, reducing the resolution of the feature
map. This layer introduces a rertain level of invarian.e to distort'ons and translations.”

\JC U C [/ " Chttps://qdata.github.io/deep2Read



https://qdata.github.io/deep2Read

Euclidean CNNs

@ defined on euclidean domains or on discrete grids
@ Grids have the above mentioned properties
@ inducitve bias for images

https://qdata.github.io/deep2Read


https://qdata.github.io/deep2Read

@ Extending pooling and conv to non euclidean domains
(graphs/manifolds)

@ assume stationarity and compositionality (find appropriate operators
for filtering and pooling)

@ How to make them fast?
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Types of Non-Euclidean CNNs

Two types of non euclidean CNNs
@ Spectral Domain

@ Spatial Domain
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Graph Theory

o Weighted undirected graph G with vertices V = {1, ..., n},
@ edges ECV xV

e edge weights w;; > 0 for (i,j) € E

o Functions over the vertices L2(V) = {f : V — R}

o

Vectors in hilbert space: f = (f1,...,fn), encoding value of function
at every node

Hilbert space with inner product < f, g >;2(\y= Xievfigi = flg
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Graph Laplacian

e Find geometry of a structure: measure smoothness of a function
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Graph Laplacian

Find geometry of a structure: measure smoothness of a function

The Laplacian measures what you could call the curvature or stress of
the field.

Unnormalized Laplacian: Af; = X, jw;i(f; — f)

difference between f and its local average: ;¥ ;w; — X ;jw;if;
Represented as a positive semi-definite n x n,

A =D — W where

W = (wj;) and D = diag(¥%.;iwij)
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Smoothness of function

@ Dirichlet Energy: a measure of how much the function f changes over
M c RN

1
If1G = Ezijwij(fi —£)? =fTAf (1)

@ measures the smoothness of f (how fast it changes locally)
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Riemannian manifolds

o Manifold X = topological space

Tangent plane T, X = local
Euclidean representation of
manifold X’ around =

@ Riemannian metric describes the
local intrinsic structure at

()ma : TeX X T, X - R

Scalar fields f : X — R and vector
fields F: X - TX

o Hilbert spaces with inner products
(e = [ T@ala)ds

(F,G)ar) = /X (F(2), G(@))r.xdz
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Manifold Laplacian

Laplacian A : L2(X) — L%(X)
Af(z) = —divVf(z)

where gradient V: L?(X) — L2(TX)
and divergence div: L?(TX) — L?(X)
are adjoint operators

(F,Vf)r2(rxy = (—divF, f)2(x)

Laplacian is self-adjoint
(A, Hlrey = (A 2 x)

Continuous limit of graph
Laplacian under some conditions

Dirichlet energy of f
(VEV ) e@xy) = /X f(x)Af(z)dx

measures the smoothness of f (how fast it changes locally)
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Orthogonal bases on graphs

@ find class of functions smooth

@ Find the smoothest orthogonal basis

ming, Egir(11) s.t[|¢n|| =1 (2)

@ similarly find subsequent eigen vectors orthogonal to the previos ones
in order of smoothness

Can be reoformulated as:
mind,eRnxntrace(qﬁTA(ﬁ) st p=1 (3)

laplacian eigen vectors are the solutions to this equation
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Laplacian Eigen Vectors

A =oAoT (4)

First eigenfunctions of 1D Euclidean Laplacian
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Laplacian Eigen Vectors for Graphs and Manifolds
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Fourier Analysis on Euclidean Spaces

@ related to the solution of dirichlet

Afunction f : [-,7] = R can be written as a Fourir seres

f() E(fa >L2 M]

k20,
fi. Fourier coefficient

—ﬂ— = f +f}\/\+faﬂvﬂv+...

Fourier basis = Laplacian eigenfunctions: - r ;,e“” ek
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Fourier Analysis on graphs

A function f:V = R can be written as Fourier series

n

f=) (o6 ¢
; F}L(V)k

Fourier hasis = Laplacian eigenfunctions: Ady, = My,

A, = frequency

|

A

" bk ok

Firet Fourier basis elements of a manifold.
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Euclidean Conv Basics

Given two functions f, g : [-7,7] = R their convolution is a function

T

(ege)= | file-2)e

=T

o Shift-invariance: f(z - o) xg(z) = (f % g)(z - 20)

o Convolution theorem: Fourier transform diagonalizes the convolution
operator = convolution can be computed in the Fourier domain as

https://qdata.github.io/deep2Read


https://qdata.github.io/deep2Read

Convolution theorem in graphs

Convolution of two vectors £ = (f1,...,f,) T and g = (g1,...,gu) T

G o th
G ft 0o G || N
frg = |10 ]
T TR T TR I
9B o Ul
0
=9 §'f
in
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Convolution theorem in graphs

[ e

fxg = |0 0o :
B0 0 fn
R a |
fi-fi
= 5
fn'ﬁn
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Spectral Convolution

defined by analogy:

fxg = ), (f0sliz(8 Seluzy) 0

k21 product in the Fourier domain

\ r

v
inverse Fourier transform

frg= Bdiag(jy,..., )8 f
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Issues with Spectral Graph CNN

@ Not shift-invariant! (G has no circulant structure)

o Filter coefficients depend on basis ¢1, ..., ¢,
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Spectral CNN

o Convolution expressed in the spectral domain g = ¢Wo' f

e W is n x n diagonal matrix of learnable spectral filter coefficients
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SIS

Filters are basis-dependent: does not generalize across graphs
O(n) parameters per layer

O(n?) computation of forward and inverse Fourier transforms

No guarantee of spatial localization of filters: free to choose multiplier
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Localization and Smoothness

Vanishing moments: In the Euclidean setting

+oo too | ak i [
[RCRICER e

Ouk
Localization in space = smoothness in frequency domain

dw

Parametrize the filter using a smooth spectral transfer function ()

Application of the parametric filter with learnable parameters o
Tao\l)
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Examples

\’t ‘;\\‘Hl‘\v‘w r\m““"‘,\'\v‘

7(A)

0 frequency o0

Non-smooth spectral filter (delocalized in space)
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Graph Pooling

@ Produce a sequence of coarsened graphs
@ Max or average pooling of collapsed vertices

@ Binary tree arrangement of node indices
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@ Poor generalization across non-isometric domains unless kernels are
localized

@ Spectral kernels are isotropic due to rotation invariance of the
Laplacian

@ Only undirected graphs, as symmetry of the Laplacian matrix is
assumed
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Spatial GNNs

o Given a function h ;¥ R% (where s the vertce of the

graph), set
) _ il
b = )
i1 (i+])
o7 = ) Wby
J'EN()
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Spatial and Spectral link

0 pick a number r

Rt - f(i)(wf)h(f),wlh(ﬂ,M’th(i))

higher the power of r, richer the filter class
but tradeoff between test time and power of filters
Edge decoration

Vertex decoration

Interaction Nets

https://qdata.github.io/deep2Read


https://qdata.github.io/deep2Read

What does GNN look like on a euclidean grid

@ Graph is a regular lattice
@ gives isotropic filters
@ less expressive than a conventional ConvNet
@ no notion of up and down
e conv nets have implicit ordering implies edge knowledge
@ For example, local correlation among pixels /translation, easy to

reorder shuffled patches of iimages
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Geodesic Polar Coordiantes

Patch operators

Image Manifold
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§ &
/

o Geodesic polar coordinates

u(may) = (p(m, y),e(fﬂ,y))

o Set of weighting functions

wi(u),..., wy(u)

a

u=p uy =14
Spatial convolution
]

st~ | st
patch operator Dj(z)f

where gy,..., g are the spatial filter coefficiente
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Convolution on Manifolds

o Geodesic polar coordinates

u(z,y) = (plz,y), 0(z,y))

/\

o Gaussian weighting functions
wy,x (1) = exp(—%(u (i p))

with learnable covariance X and
mean

:Ll =p uy =10
Spatial convolution
J
(e} = Lo | ) 4

=1y

v
patch operator D;(z)f

where gy,..., gy are the spatial filter coefficients and py, ...,y and
¥1,..., X  are patch operator parameters

\JC U < https://qdata.github.io/deep2Read


https://qdata.github.io/deep2Read

Correspondence |: Local Feature Learning

X =] [ntrinsic deep net

) =1 Intrinsic deep net

Siamese net two net instances with shared parameters ©
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Correspondence Il: Labelling

@ Groundtruth correspondencer : X — Y from query shape X to some
reference shape Y (discretized with n vertices)

@ Correspondence = label each query vertex x as reference vertex y

@ Net output at x after softmax layer= probabilitydistributiononY
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Correspondence Results
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Matrix Completion

min X s.t. x;; =ai; Vij €
omin X[ st @ = ay Vi
cQin X[l + pl|2e (X — A

min  pl|Qo (X — A)|2 + petr(XAXT)
XeRmXxn

min Qo (X = A)|Z + e tr(XAXT) + pir tr(XTA,X)
N——— ——

XeRmxn
I X3,

[N PUNTIN VS Pccciite Voo dells
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@ Spectral vs Spatial Convolution on Non Euclidean Domains: Graphs
and Manifolds

@ Spectral Better if Graph assumed to be similar across samples

@ Leveraging low dimension structure at tangent planes in manifolds for
spectral convolution

@ Applications
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