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Graph

Graph

A graph G = (V ,E ), where V = 1, 2..N is the set of Vertices and
E ⊆ V × V .

(Vertex) Weighted Graph

A weighted graph G = (V ,E ,W ), where V = 1, 2..N is the set of
Vertices, E ⊆ V × V , W : V → R.
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Graph

Degree

The degree d(v) of a vertex v is the number of vertices in G that are
adjacent to v .

Adjacency Matrix

Adjacency matrix A of the graph G is a n × n matrix that

Aij =

{
1 (i , j) ∈ E

0 Otherwise
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Graph Laplacian

(Unnormalized) Graph Laplacian

Graph Laplacian L = diag(d)− A, which

Lij =


di i = j

−1 i 6= j&(i , j) ∈ E

0 Otherwise
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Why Laplacian?

Laplacian

For function f, Laplacian operator ∆f = ∇ · ∇f

Laplacian represents the divergence of the gradient.

It’s a coordinate-free operator!

In physics, if a electromagnetic field is defined by a electrostatic
potential function φ, then ∆φ gives the charge distribution in the
field.
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Eigenfunction of Laplacian Operator

Eigenfunction of Laplacian in (0, 1)

Suppose f is the eigenfunction of the Laplacian:

∆f + λf = 0, f (0) = f (1) = 0

∆f =
∂2f

∂x2
= −λf

The only non-trivial solution of the Laplacian is

fn(x) = C sin(nπx), n ∈ N

fn is the Fourier sine series.

fn together forms an orthonormal basis of the space L2(0, 1)

Theorem: For any L2(Ω) space where Ω is a reasonably smooth
domain, there exists an orthonormal family of eigenfunctions of ∆
that forms an orthonormal basis of the space.
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Graph Laplacian Revisited

Graph Laplacian

Graph Laplacian L = D − A

Suppose f is a function from vertex to R.

f can be represented by a vector (f1, f2...fn) with size n.

Therefore, [Lf ]i = di −
∑

j Aij fj =
∑

j Aij(fi − fj)

Calculating the difference on the value of a vertex to its neighbors!

f TLf =
∑

<i ,j>∈E
(fi − fj)

2
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Graph Laplacian Revisited

Graph Laplacian

L = D − A

f TLf =
∑

<i ,j>∈E
(fi − fj)

2

Symmetric real matrix −→ Real eigenvalues

Positive semidefinite −→ Non-negative eigenvalues

First eigenvalue is 0 with eigenvector {1, 1, 1...1}
0 = λ1 ≤ λ2 ≤ ... ≤ λn
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Graph Fourier transform

The eigenvector of graph Laplacian matrix can be used as a
orthonormal basis of the Hilbert space.
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Graph Spectral Filtering

Filters can be used to form a convolutional layer
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Spectral Networks and Deep Locally Connected Networks
on graphs
Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann Lecun

CNN is powerful. Extend CNN to general graphs.

1. Use hierarchical clustering

2. Use spectrum of graph laplacian to learn convolutional layers

Efficient: Number of parameters is independent of input size
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Spatial CNN use Hierarchical clustering

Form a multi-scale clustering

The k-th layer has dk clusters

The k-th layer has fk filters

Convolutional Layer

For j = 1..fk ,

xk+1,j = Lkh(

fk−1∑
i=1

Fk,i ,jxk,i )

.
Fk , i , j is a dk−1 × dk−1 sparse matrix.
Lk is a pooling operation.

Clusters are pre-defined by hierarchical clustering.
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Spectral Construction

Spectral Convolution

Suppose V is the eigenvectors of L.
Input: xk , size n × fk−1
Without spatial subsampling:

xk+1,j = h(U

fk−1∑
i=1

Fk,i ,jU
T xk,i )

Fk,i ,j is a diagonal weight matrix.

Only use top d eigenvectors to reduce cost.
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Experiment 1: Subsampled MNIST

Subsample MNIST to 400 points

Baseline: Nearest Neighbor (4.11% Error rate)

(University of Virginia) Spectral Graph Theory and Graph CNN Presenter : Ji Gao 18 / 28



Experiment 1: Subsampled MNIST
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Experiment 2: Sphere MNIST

Project MNIST to sphere

Uniformly or Randomly
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Experiment 2: Sphere MNIST
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Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering
Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst

Improve previous spectral CNN

Main Contributions:

Strictly localized filters
Low computational complexity
Efficient pooling method
Multiple experiment on different datatypes
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Filters

graph filter

y = UTg(Λ)Ux

Where U is the eigenvector of L and Λ is the diagonal matrix of all
eigenvalues of L

Naive approach is to learn g(Λ) = diag(θ) directly.

Limitations:

It’s not localized
The complexity is O(n).
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Polynomial filter

Polynomial filter

g(Λ) =
∑L

k=1 θkΛK

Spectral filters represented by K th-order polynomials of the Laplacian
are K -localized: connect all the vertices in at most K steps.

Learning complicity is O(K )

Use Chebyshev polynomial to make it faster: g(Λ) =
∑L

k=1 θkTk(Λ),
where Tk = 2xTk−1 − Tk−2
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Pooling
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Experiment 1: MNIST

(University of Virginia) Spectral Graph Theory and Graph CNN Presenter : Ji Gao 26 / 28



Experiment 2: 20Newsgroup
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