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A graph G = (V,E), where V = 1,2..N is the set of Vertices and
ECVxV.

(Vertex) Weighted Graph

A weighted graph G = (V, E, W), where V =1,2..N is the set of
Vertices, EC V xV, W:V = R.
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The degree d(v) of a vertex v is the number of vertices in G that are
adjacent to v.

Adjacency Matrix

Adjacency matrix A of the graph G is a n X n matrix that

1 (i,j)eE
AU_:{ (ir4) €

0 Otherwise
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Graph Laplacian

(Unnormalized) Graph Laplacian
Graph Laplacian L = diag(d) — A, which

d i=j
Li={ -1 i#j&(i,j)€E
0 Otherwise
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© Graph Laplacian

e Why Laplacian?
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Why Laplacian?

Laplacian

For function f, Laplacian operator Af =V - Vf

@ Laplacian represents the divergence of the gradient.

@ It's a coordinate-free operator!

@ In physics, if a electromagnetic field is defined by a electrostatic
potential function ¢, then A¢ gives the charge distribution in the
field.
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Eigenfunction of Laplacian Operator

Eigenfunction of Laplacian in (0, 1)
Suppose f is the eigenfunction of the Laplacian:

Af +\f = 0,(0) = f(1) =0

_of
ox2

The only non-trivial solution of the Laplacian is

Af —Af

fo(x) = Csin(nmx),n € N

@ f, is the Fourier sine series.

e f, together forms an orthonormal basis of the space L2(0,1)

@ Theorem: For any L2(Q) space where Q is a reasonably smooth
domain, there exists an orthonormal family of eigenfunctions of A
that forms an orthonormal basis of the space.
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© Graph Laplacian

@ Graph Fourier Transform
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Graph Laplacian Revisited

Graph Laplacian
Graph Laplacian L=D — A

Suppose f is a function from vertex to R.

o

e f can be represented by a vector (f1, f5...f,) with size n.

o Therefore, [Lf]; = d; — > ; Ajfy = >3 Ai(fi — £;)

o Calculating the difference on the value of a vertex to its neighbors!
o

= Y (F- 6P

<i,j>€E
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Graph Laplacian Revisited

Graph Laplacian

L=D—-A
L= Y (- )
<ij>€E

Symmetric real matrix — Real eigenvalues
Positive semidefinite — Non-negative eigenvalues
First eigenvalue is 0 with eigenvector {1,1,1...1}
0= < <. <A,
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Graph Fourier transform

@ The eigenvector of graph Laplacian matrix can be used as a
orthonormal basis of the Hilbert space.

dz

one-dimensional Laplace operator: ——

dr?
| 2

ejw:r

graph Laplacian: L

4

eigenvectors: X £

5 ‘f VS RY

eigenfunctions:

Classical FT:  f(w) = "1 (z)z

S [

Graph FT: f = (xe, ) --.

N-1

=0
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Graph Spectral Filtering

FT

. @ . IFT
fw) ! §w)f(w) | ==

f*g

xg(Mx" f

@ Filters can be used to form a convolutional layer
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Spectral Networks and Deep Locally Connected Networks

on graphs

Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann Lecun

CNN is powerful. Extend CNN to general graphs.
1. Use hierarchical clustering

2. Use spectrum of graph laplacian to learn convolutional layers

Efficient: Number of parameters is independent of input size
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Spatial CNN use Hierarchical clustering

@ Form a multi-scale clustering
@ The k-th layer has dj clusters
@ The k-th layer has f; filters

Convolutional Layer

For j = 1..f,

fi—1

Xk+1j = Lkh(z Fk,i,ij,i)
i=1

Fr,i,jis a dx_1 X dik_1 sparse matrix.
Ly is a pooling operation.

@ Clusters are pre-defined by hierarchical clustering.
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Spectral Construction

Spectral Convolution

Suppose V is the eigenvectors of L.
Input: xg, size n X fr_1
Without spatial subsampling:

fi—1

Xk+1,j = h(UZ Fk’,"jUTXk,,')
i=1

Fy,ij is a diagonal weight matrix.

@ Only use top d eigenvectors to reduce cost.
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Experiment 1: Subsampled MNIST

@ Subsample MNIST to 400 points
@ Baseline: Nearest Neighbor (4.11% Error rate)

Table 1: Classification results on MNIST subsampled on 400 random locations, for different ar-
chitectures. FCN stands for a fully connected layer with NV outputs, LRFN denotes the locally
connected construction from Section 2.3 with N outputs, MPN is a max-pooling layer with N
outputs, and SPN stands for the spectral layer from Section 3.2.

method Parameters | Error

Nearest Neighbors N/A 4.11
400-FC800-FC50-10 3.6-10° 18
400-LRF1600-MP800-10 7.2-107 18

400-LRF3200-MP800-LRF800-MP400-10 1.6-10° 13

400-SP1600-10 (d, 32-10° 2.6
(@) (®) 400-SP1600-10 (d; 1.6-10° 2.3
400-SP4800-10 (d; = 300, g = 20) 5-10° 18

Figure 3: Subsampled MNIST examples.
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Experiment 1: Subsampled MNIST

(@) (b)

Figure 4: Clusters obtained with the agglomerative clustering. (a) Clusters corresponding to the
finest scale k = 1, (b) clusters for k = 3 .

(a) (b)

Figure 5: Examples of Eigenfunctions of the Graph Laplacian vy, v.
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Experiment 2: Spher

@ Project MNIST to sphere

@ Uniformly or Randomly

@ ®)

Figure 7: Examples of some MNIST digits on the sphere.

Table 2: Classification results on the MNIST-sphere dataset generated using partial rotations, for
different architectures

method P Error
Nearest Neighbors N/A 19
4096-FC2048-FC512-9 10 5.6
4096-LRF4620-MP2000-FC300-9 8-10” 6
4096-LRF4620-MP2000-LRF500-MP250-9 2-10° 6.5
4096-SP32K-MP3000-FC300-9 (d; = 2048, ¢ = n) 9-10° 7
4096-SP32K-MP3000-FC300-9 (d; = 2048, g = 64) 9-10° 6
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Experiment 2: Sphere MNIST

Table 3: Classification results on the MNIST-sphere dataset generated using uniformly random ro-
tations, for different architectures

method Parameters | Error
Nearest Neighbors NA 80
4096-FC2048-FC512-9 107 52
4096-LRF4620-MP2000-FC300-9 8-10° 61
4096-LRF4620-MP2000-LRF500-MP250-9 2.10° 63
4096-SP32K-MP3000-FC300-9 (d, = 2048, ¢ = n) 9.10° 56
4096-SP32K-MP3000-FC300-9 (d; = 2048, ¢ = 64) 9-10° 50
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Convolutional Neural Networks on Graphs with Fast

Localized Spectral Filtering

Michaél Defferrard, Xavier Bresson, Pierre Vandergheynst

@ Improve previous spectral CNN

@ Main Contributions:

Strictly localized filters

Low computational complexity

Efficient pooling method

Multiple experiment on different datatypes
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graph filter

y = UTg(N)Ux

Where U is the eigenvector of L and A is the diagonal matrix of all
eigenvalues of L

o Naive approach is to learn g(A) = diag(0) directly.
o Limitations:

o It's not localized
e The complexity is O(n).
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Polynomial filter

Polynomial filter
g(N) = Loy Ok

@ Spectral filters represented by Kth-order polynomials of the Laplacian
are K-localized: connect all the vertices in at most K steps.

@ Learning complicity is O(K)

@ Use Chebyshev polynomial to make it faster: g(A) = ZI&:I Ok Tk (N),
where T) = 2xTy_1— Ty_»
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Pooling

Figure 2: Example of Graph Coarsening and Pooling. Let us carry out a max pooling of size 4
(or two poolings of size 2) on a signal = € R® living on G, the finest graph given as input. Note
that it originally possesses ng = [Vy| = 8 vertices, arbitrarily ordered. For a pooling of size 4,
two coarsenings of size 2 are needed: let Graclus gives G; of size ny = [V;| = 5, then G, of size
ny = |Va| = 3, the coarsest graph. Sizes are thus set to no = 3, ny = 6, ng = 12 and fake nodes
(in blue) are added to V; (1 node) and V, (4 nodes) to pair with the singeltons (in orange), such that
each node has exactly two children. Nodes in V, are then arbitrarily ordered and nodes in V; and
Vo are ordered consequently. At that point the arrangement of vertices in Vy permits a regular 1D
pooling on 2 € R'? such that z = [max(xg, z1), max(x4, T5, 76 ), max(zs, 9, r10)] € R, where
the signal components 2, x3, 27, 211 are set to a neutral value.
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Experiment 1: MNIST

Model Architecture Accuracy

Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN  GC32-P4-GC64-P4-FC512 99.14

Table 1: Classification accuracies of the proposed graph CNN and a classical CNN on MNIST.
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Experiment 2: 20Newsgroup

Model Accuracy
Linear SVM 65.90
Multinomial Naive Bayes 68.51
Softmax 66.28
FC2500 64.64
FC2500-FC500 65.76
GC32 68.26

Table 2: Accuracies of the proposed graph

CNN and other methods on 20NEWS.
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Figure 3: Time to process a mini-batch of S = 100
20NEWS documents w.r.t. the number of words 7.

Spectral Graph Theory and Graph CNN

Presenter : Ji Gao



Reference

o
2]
o
o
o

Laplacian Operator - Wikipedia
An introduction to spectral graph theory Jiang Jiaqi

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering Michaél
Defferrard, Xavier Bresson, Pierre Vandergheynst(EPFL, Lausanne, Switzerland)

Spectral Networks and Locally Connected Networks on Graphs Joan Bruna, Wojciech
Zaremba, Arthur Szlam, Yann LeCun

Graph signal processing: Concepts, tools and applications Xiaowen Dong

(University of Virginia) Spectral Graph Theory and Graph CNN Presenter : Ji Gao 28/28



	Graph Laplacian
	Definitions
	Why Laplacian?
	Graph Fourier Transform

	Spectral Neural Network
	Fast Spectral Filtering
	Reference

