Reinforcement Learning with Unsupervised Auxiliary
Tasks

Presenter: Ceyer Wakilpoor

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom
Schaul, Joel Z Leibo, David Silver, and Koray Kavukcuoglu

DeepMind

Nov 2016

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 1/1

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016

Introduction

@ Both natural and artificial agents line in a stream of sensorimotor
data
o At each time step t, the agent receives observations o; and executes
action a;
@ These actions influence the course of the sensorimotor stream
o Classical reinforcement learning (RL) paradigm focuses on the
maximization of extrinsic reward, but in many cases there are more
goals than the immediate extrinsic rewards

@ This paper introduces an agent they refer to as the UNsupervised
REinforcement and Auxiliary Learning agent (UNREAL)

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 4/1

Introduction

@ Imagine a child trying to maximize the total amount of red it sees
e The baby must understand how to increase "redness” through various
means
e This includes the ability to bring the red object close o its eyes, crying
to get red items from parents, and moving towards red objects
@ These ideas aren't crucial to maximizing the reward, but
understanding these concepts are helpful for future tasks

@ These abstractions can be reused for different tasks in the long run

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 5/1

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016

Overview

@ The architecture utilizes auxiliary tasks that provide pseudo rewards,
leading the agent to make auxiliary predictions that serve to focus the
agent on important aspects of the task

@ There are replay mechanisms to provide additional updates, much like
how animals and humans dream about positively and negatively
rewarding events more frequently

@ Both the auxiliary control and auxiliary prediction tasks share the

convolutional neural network and LSTM that the base agent uses to
act

e This leads the agent to create jointly learned representations that
greatly improve the policies at the end of training
@ This paper brings together Asynchronous Advantage Actor-Critic
(A3C) with auxiliary control tasks and auxiliary reward tasks

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 7/1

Overview

O Agent LSTM
(a) Base A3C Agent /N AgenConiNes fh—‘ﬂuiﬁ-—\

H N/ AuxDeConvNet
. @—O_ ? O AwFCmet i \
Replay Buffer A A
iﬂ ﬂ =]
+ @ e

(d) Value Function Replay

tr 17+| fr+z tr+.s

T

e Skewlgd
) Qaux \v‘\sampmg A

(c) Reward Predlclion

(b) Pixel Control

Figure 1: Overview of the UNREAL agent. (a) The base agent is a CNN-LSTM agent trained on-policy with
the A3C loss (Mnih et al., 2016). Observations, rewards, and actions are stored in a small replay buffer which
encapsulates a short history of agent experience. This experience is used by auxiliary learning tasks. (b) Pixel
Control - auxiliary policies Q*"* are trained to maximise change in pixel intensity of different regions of the
input. The agent CNN and LSTM are used for this task along with an auxiliary deconvolution network. This
auxiliary control task requires the agent to learn how to control the environment. (c) Reward Prediction — given
three recent frames, the network must predict the reward that will be obtained in the next unobserved timestep.
This task network uses instances of the agent CNN, and is trained on reward biased sequences to remove the
perceptual sparsity of rewards. (d) Value Function Replay — further training of the value function using the
agent network is performed to promote faster value iteration. Further visualisation of the agent can be found in
https://youtu.be/Uz-2zGYrYEJA

Max Jaderber; yr Mnih, Wojciech MReinforcement Learning with Unsupervised At Nov 2016

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016

@ Standard RL setting where agent interacts with an environment over
a number of discrete time steps

@ Agent's state s; is a function of its experience up until time t
st = f(01,m,a1,...., O, It)
@ n-step return R+, is a discontinued sum of rewards

n
Rt:t—|—n = Z ’Y’ft+1
i=1

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 100/1

Background

@ Value function is the expected return from state s, when actions are
selected according to a policy m(als)

VF(S) = E[Rt:oo|st = 5,77]

@ The action-value function is the expected return following action a
from state s

Q" (s,a) = E[Rt.00|st = 5,ar = a, 7]

@ The goal in Q-learning and asynchronous Q-learning is to approximate
the action-value function, Q(s, a; 8) using parameters 6

@ Update parameters to minimize the mean-squared error, for example
using an n-step lookahead loss:

L£q =E[(Reen+7"max Q(s',d:607) = Q(s, 2:0))7]

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 1/1

Background

@ In practice, these formulas are approximated using some function of
the states (which are usually parametrized by variables)

@ The Asynchronous Advantage Actor-Critic (A3C) algorithm
approximates the policy, 7(als,) and the value function V(s,)

@ The policy and the value approximation are adjusted towards an
n-step lookahead loss using an entropy regularization penalty, so the

loss is:
Lasc ~ Lyr + L — Esor[aH(n (s, 0)]

where

Lvr = Esr[(Re:tin + 7"V (Stnt1,07) — V(st,0))?]

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 12 /1

@ A3C uses many instances of the agent to interact in parallel with the
environment, this accelerates and stabilizes the learning

@ They utilize an LSTM to jointly approximate both policy, 7 and value
function, V using the entire history of experience as inputs

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 13/1

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 14

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 15

Auxiliary Control Tasks

@ Define an auxiliary control task, ¢ by a reward function
r(€): SxA - R
o Where S is the space of possible states including the history of
observations and rewards, and the current state of the agent (as in the

activation of the hidden units of the network)
e A is the space of available actions

o Let 7(9) be the agent’s policy for each auxiliary task, ¢ € C, the
objective is to maximize total performance across all tasks:

arg meaXEw[Rl:oo] + Ac Z EWC[szco)o]
ceC

o RO =37, ykrt(c) is the discounted return for auxiliary reward r(c),
and 6 is the set of parameters of 7 and all 7(9)’s

@ By sharing some of the parameters of = and 7(¢) the agent must
balance improving the global reward and auxiliary tasks

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 16 /1

Auxiliary Control Tasks

@ Any RL method could be applied to maximize these objectives, but
they go with Q-learning, which is off-policy
e This is crucial to allow the agent to learn many different
pseudo-rewards simultaneously from a single stream of experience

@ For each control task, they optimize an n-step Q-learning loss:

E((;f) = E[(Rt:tJrn + ’Yn ma‘?x Q(C)(Sla 3,7 9_) - Q(C)(S7 9, 0))2]

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016

Auxiliary Control Tasks

@ They focus on two main auxiliary reward functions that others are
based off of
o Pixel changes - changes in the perceptual stream often correspond to
important events in an environment, so one auxiliary task is maximally

observe changes in the input image pixels
o Network features - in order to extract task-relevant high-level features

of the environment, the activation of hidden units itself is an auxiliary

reward

Nov 2016 18/1

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At

Auxiliary Control Tasks

Q-learning (off-policy TD control) for estimating 7 ~

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R+ ymaxa Q(S',a) — Q(S, A)]
S« s
until S is terminal

D control) for estimating @ ~ ¢.

Initialize Q(s, a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S

Choose A from S using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S, 4) — Q(S, A) + a[R +1Q(S', A') — Q(5, A)]
S 8 A+ A
until S is terminal

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 19/1

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 20

Auxiliary Reward Tasks

@ An agent wants to optimize its reward, but isn't necessarily trained to
know when it might get reward, so one of the auxiliary reward tasks is
reward prediction

@ This task is done by processing a sequence of consecutive
observations, and requiring the agent to predict the reward picked up
in the unseen frame

@ This simply going to help shape the features

@ This affects the network and the representation of the features and
predictor without shaping the value function or policy

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 21 /1

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016

Experience Replay

@ Empirically proven to be useful in many other uses

@ Main idea: store transitions in a replay buffer, and then apply learning
updates to sampled transitions from this buffer

@ This allows a training bias towards positive reward, compared to
directly sampling from behaviour policy

Equally sample rewarding and non-rewarding replays
Use the replay buffer to perform value function replay

Sparsity over time of replay allows for new features to be found

Since there is already a large bias for positive value evaluation, they
don't skew the sampling for value function replay

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 23/1

Experience Replay

100%

75%

% left

actions 50%'

from A

25%

5%
0

N(=0.1,1

)
0 C) 0
left right D

Q-learning
Double '
Q-learning

_________________________________ optimal

100 200 300
Episodes

Figure 6.7: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown inset). Q-
learning initially learns to take the left action much more often than the right action, and always takes it
significantly more often than the 5% minimum probability enforced by e-greedy action selection with ¢ = 0.1. In
contrast, Double Q-learning is essentially unaffected by maximization bias. These data are averaged over 10,000
runs. The initial action-value estimates were zero. Any ties in e-greedy action selection were broken randomly.

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At

Nov 2016 24

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 25

@ Bringing everything together, UNREAL:
o Utilizes A3C, learning from parallel streams of experience to gain
efficiency and stability
o Uses an RNN to encode the complete history

@ The auxiliary tasks are trained on recent sequences of experience and
randomly sampled
o These targets are trained off-policy by Q-learning using a simple
feedforward architecture

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 26 /1

UNREAL Agent

@ The UNREAL algorithm, as a whole, optimizes a single combined loss
function wrt to the joint parameters and using A as the weighting
terms on each loss component, 6:

Lunreac(0) = Lasc + AvrLvr + Apc Y E(.f) + ArPLrP

@ A3C, Lasc, is optimized on-policy from direct experience

@ The value function loss, Lyg, is optimized from replay data, but also
on-policy for the component in A3C

@ The auxiliary control loss, Lpc, is optimized off-policy from replayed
data, by n-step Q-learning

@ The reward loss, Lgrp, is optimized from re-balanced replay data

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 27 /1

Outline

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016

Experiments

+1 Apple Agent

Agent Input nav_maze_all_random_02 samples

Figure 2: The raw RGB frame from the environment is the observation that is given as input to the
agent, along with the last action and reward. This observation is shown for a sample of a maze from the
nav_maze_all_random_02 level in Labyrinth. The agent must navigate this unseen maze and pick up apples
giving +1 reward and reach the goal giving +10 reward, after which it will respawn. Top down views of samples
from this maze generator show the variety of mazes procedurally created. A video showing the agent playing
Labyrinth levels can be viewed at https://youtu.be/Uz-zGYrYEJA

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016

Experiments and Results

Max Jaderber;

Labyrinth Performance Labyrinth Robustness

A TOP 3 sgems

Atari Performance Atari Robustness

. A TOP 3 sgems -

s o UNREAL - i
f61% ASCHRPAVR ey

ety

Figure 3: An overview of performance averaged across all levels on Labyrinth (Top) and Atari (Bottom). In
the ablated versions RP is reward prediction, VR is value function replay, and PC is pixel control, with the
UNREAL agent being the combination of all. Left: The mean human-normalised performance over last 100
episodes of the top-3 jobs at every point in training. We achieve an average of 87% human-normalised score,
with every element of the agent improving upon the 54% human-normalised score of vanilla A3C. Right: The
final human-normalised score of every job in our hyperparameter sweep, sorted by score. On both Labyrinth
and Atari, the UNREAL agent increases the robustness to the hyperparameters (namely learning rate and entropy
cost).

Wojciech MReinforcement Learning with Unsupervised At

Nov 2016

Experiments and Results

nav_maze_al_random_01

nav_maze_random_goal 01 , nav_maze_al random_01

— A3C

— A3C + Input reconstruction
A3C + Input change prediction
A3C + Pixel Control

— A3C + Input reconstruction
A3C + Input change prediction 10 //
A3C + Pixel Control

— A3C
A3C + Feature Control
A3C + Pixel Control

© 0)

0 o 10 0

Traiing steps in millions. Traning steps in millons Traiing steps in milions

Figure 5: Comparison of various forms of self-supervised learning on random maze navigation. Adding an
input reconstruction loss to the objective leads to faster learning compared to an A3C baseline. Predicting
changes in the inputs works better than simple image reconstruction. Learning to control changes leads to the
best results.

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 il

Experiments and Results

@ They found that the unsupervised RL helped a lot, showing that
learning to control the pixel changes helped more than just predicting
the immediate pixel changes

@ This paper has shown that augmenting a deep RL agent with
auxiliary control and reward prediction tasks can drastically improve
both data efficiency and robustness to hyperparameter settings

@ Double the previous state-of-the-art results, and increased learning
speed significantly

e https://www.youtube.com/watch?v=Uz-zGYrYEjA

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 32/1

Citations

Reinforcement Learning: An Introduction by Richard S. Sutton and
Andrew G. Barto

Max Jaderberg, Volodymyr Mnih, Wojciech MNReinforcement Learning with Unsupervised At Nov 2016 33

