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Generative models Il: Outline

@ Autoregressive models
e PixelCNN
o Latent variable models

e Variational Autoencoders
o Generative Adversarial Networks
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Comparision

Generative Models

- PixelRNN and PixelCNN Explicit density model, optimizes exact likelihood, good
samples. But inefficient sequential generation.

- Variational Autoencoders (VAE) Optimize variational lower bound on likelihood. Useful
latent representation, inference queries. But current
sample quality not the best.

- Generative Adversarial Networks (GANs) Game-theoretic approach, best samples!
But can be tricky and unstable to train,
Also recent work in combinations of no inference queries.
these types of models! E.g. Adversarial
Autoencoders (Makhanzi 2015) and
PixelVAE (Gulrajani 2016)
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What is exponential family

Exponential family comprises a set of flexible distribution ranging both
continuous and discrete random variables. The members of this family have
many important properties which merits discussing them in some general
format. Many of the probability distributions that we have studied so far are
specific members of this family:

o Gaussian: R?

e Multinomial: categorical

e Bernoulli: binary {0, 1}

e Binomial: counts of success/failure
e Von mises: sphere

e Gamma: R™

e Poisson: Nt

e Laplace: R*

e Exponential: R

e Beta: (0,1)

e Dirichlet: A (Simplex)

e Weibull: R*

o Weishart: symmetric positive-definite matrices
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What is exponential family

A pdf or pmf p(x|@), for x = (z1,...,2m) € X™ and 8 € © C RY, is said to be in the
exponential family if it is of the form

§xlO) = i) expie” p(x) o)
= h(x)exp[0” p(x) — A(6)] 9.2)

where
20) = [ 1) expio”px)x 93
A8) = logZ(8) 9.4)

Here @ are called the natural parameters or canonical parameters, ¢(x) € R? is called a
vector of sufficient statistics, Z(8) is called the partition function, A(8) is called the log
partition function or cumulant function, and i(x) is the a scaling constant, often 1. If
@(x) = x, we say it is a natural exponential family.
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W hould we care about it

@ It can be shown that, under certain regularity conditions, the
exponential family is the only family of distributions with finite-sized
sufficient statistics, meaning that we can compress the data into a
fixed-sized summary without loss of information. This is particularly
useful for online learning, as we will see later.

@ The exponential family is the only family of distributions for which
conjugate priors exist, which simplifies the computation of the
posterior.

@ The exponential family is at the core of generalized linear models and
variational inference.
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Scalar parameter

A single-parameter exponential family is a set of probability distributions whose
probability density function (or probability mass function, for the case of a discrete
distribution) can be expressed in the form

fx(z | 0) = h(z) exp(n(6) - T(z) — A(6))
where T(x), h(x), n(6), and A(6) are known functions.

An alternative, equivalent form often given is

fx(z | 6) = h(x)g(6) exp(n(6) - T())
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Vector parameter

The definition in terms of one real-number parameter can be extended to one real-
vector parameter

0= (6,6,,...,0,)".

A family of distributions is said to belong to a vector exponential family if the probability
density function (or probability mass function, for discrete distributions) can be written
as

fx(z | ) = h(z) exp zn (O)T:(z) — A(6)
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Vector parameter, vector variable

The vector-parameter form over a single scalar-valued random variable can be trivially
expanded to cover a joint distribution over a vector of random variables. The resulting
distribution is simply the same as the above distribution for a scalar-valued random
variable with each occurrence of the scalar x replaced by the vector

X = (-'L'lam%"'azk)-

Note that the dimension k of the random variable need not match the dimension d of
the parameter vector, nor (in the case of a curved exponential function) the dimension s
of the natural parameter 717 and sufficient statistic T(x).

The distribution in this case is written as

(x| 8) = h(x)exp( S m(O)T:(x) — 4(6)
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Bernoulli distribution

As an example of a discrete exponential family, consider the binomial distribution with
known number of trials n. The probability mass function for this distribution is

n -
) (x)pm(l -p)" %, z€{0,1,2,...,n}.
This can equivalently be written as

f(z) = (;‘) exp (a: 1og(1’%p) +nlog(l— p)),

which shows that the binomial distribution is an exponential family, whose natural
parameter is

p
n = log -
L

This function of p is known as logit.
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Normal distribution: unknown mean, known variance

As a first example, consider a random variable distributed normally with unknown mean

p and known variance 2. The probability density function is then

1 (17“)2

V2no?

e 202
This is a single-parameter exponential family, as can be seen by setting

fo(z; ) =

2

hy(z) = . e 2?
V2mo?
x
T, (z) = =
2
1
Ay (p) = ﬁ
m
770(”) = p

If o =1 this is in canonical form, as then n(u) = u.
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Normal distribution: unknown mean and unknown variance

Next, consider the case of a normal distribution with unknown mean and unknown
variance. The probability density function is then

1 - (el

e 202
vV 2mwo?

This is an exponential family which can be written in canonical form by defining

g e
"=\

fla; py0) =
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Conjugate prior

@ A conjugate prior is one which, when combined with the likelihood
and normalised, produces a posterior distribution which is of the same
type as the prior.

@ For example, if one is estimating the success probability of a binomial
distribution, then if one chooses to use a beta distribution as one's
prior, the posterior is another beta distribution.

@ An arbitrary likelihood will not belong to the exponential family, and
thus in general no conjugate prior exists. The posterior will then have
to be computed by numerical methods.

Aaron Courville Generative Models |1 - /18



Conjugate prior for exponential family

@ In the case of a likelihood which belongs to the exponential family
there exists a conjugate prior, which is often also in the exponential
family.
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Conjugate prior for exponential family

First, assume that the probability of a single observation follows an exponential family,

parameterized using its natural parameter:
pr(z | 1) = h(z)g(n) exp(n" T())
Then, for data X = (a:l, iy mn) the likelihood is computed as follows:
p(X|n) = (Hh(wz> exp( TZT :c,)

Then, for the above conjugate prior:

p=(m | x,v) = f(x,v)9(n)” exp(n x) x g(n)” exp(n” x)
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Conjugate prior ntial family

where s is the dimension of 77 and y > () and )X are hyperparameters (parameters
controlling parameters). v corresponds to the effective number of observations that the
prior distribution contributes, and X corresponds to the total amount that these
pseudo-observations contribute to the sufficient statistic over all observations and
pseudo-observations. f(x, V) is a normalization constant that is automatically
determined by the remaining functions and serves to ensure that the given function is a
probability density function (i.e. it is normalized). A(7) and equivalently g(n) are the
same functions as in the definition of the distribution over which 1 is the conjugate prior.
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Conjugate prior for exponential family

We can then compute the posterior as follows:

p(n | X, x,v) < p(X | n)p=(n| x,7)

(H bz ) g(n)" exp< E"jT(wi)> 70 V)am)” ex(s

i=1

g(n)" eXP( B Z T(z;) ) )" exp(n" x)

o g(m)"*" exp (nT (x + Z T(%i)))
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Conjugate prior for exponential family

@ This shows that the update equations can be written simply in terms
of the number of data points and the sufficient statistic of the data.

The update equations are as follows:

X =x+ T(X)
n
=X+ZT($i)
i1
V=v+n
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