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Introduction

GANs do not perform well in the reconstruction of real images with

‘objects’. Following are some examples from CIFAR dataset:
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Introduction

GANs do not perform well in the reconstruction of real images with
‘objects’. Following are some examples from CIFAR dataset:

Goal: To alter the training criteria to obtain ‘objectness’ in the synthesis
of images.
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Generative Adversarial Networks

@ Adversarial game between generator G and discriminator D:

arg mGin arg mDaxIEXND log D(x) + E,p(z) log(1l — D(G(2))) (1)
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Generative Adversarial Networks

@ Adversarial game between generator G and discriminator D:
arg mGin arg mDaxIEXND log D(x) + E,p(z) log(1l — D(G(2))) (1)

@ Minimizing the above with respect to G is difficult and hence the
following criterion is used in practice:

arg mc?x]EZNP(Z) log D(G(z2)) (2)
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GAN Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

o Sample minibatch of m noise samples {z(}), ..., z(™)} from noise prior p,(z).
o Sample minibatch of m examples {x'") ... (™} from data generating distribution
Paata(T).-

o Update the discriminator by ascending its stochastic gradient:

m

Tk 35l (59) s (1 0 (6 ()

end for
« Sample minibatch of m noise samples {z(*), ..., z(™)} from noise prior p,(z).
o Update the generator by descending its stochastic gradient:

m

Vg‘}% ;log (1 - D (G (z“)))) .

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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Challenges and Limitations of GANs

@ Maximizing the original GAN equation with respect to D is infeasible
to perform exactly. Thus G minimizes lower bound of correct
objective function

arg mGin arg max Ex~plog D(x) + E,p(z) log(1 — D(G(2)))
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Challenges and Limitations of GANs

@ G collapses to generate near duplicate images in independent draws
and with lower diversity of samples than what is observed in the real

dataset

/iy
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping & = ((z) imposes the non-uniform distribution p, on
transformed samples. (& contracts in regions of high density and expands in regions of low density of p,. (a)
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Challenges and Limitations of GANs

@ GANs lack a closed form of likelihood, and hence it is difficult to
quantitatively evaluate the performance
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Challenges and Limitations of GANs

@ GANs lack a closed form of likelihood, and hence it is difficult to
quantitatively evaluate the performance

@ Inception score is a metric provided by Salimans et al. which uses
Inception CNN to compute:

1({x}Y) = exp(E[Dxe(p(y|x)IIp(y))])

To get high inception score:

e p(y|x) should have low entropy for image with meaningful objects

o [ p(y|x = G(z))dz should have high entropy to identify a wide variety
of classes
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Related Work

@ Salimans et al. proposed feature matching as an alternative training
criterion for GAN generators

arg min Exn[6(x)] = Eznp(z)[0(G(2)]]1?

where ¢ is the high level feature mapping of discriminator. The
authors use semi-supervised training.

@ Enegry-based GANs by Zhao et al. replace discriminator with
auto-encoder and reconstructs the training data. Assigns low energy
to real data and high energy to samples from G

© Sonderby et al. train a denoising AE to get the difference between
synthesized real image and output of denoising AE and pass it as a
signal to train super-resolution network.
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Improving GAN Training

@ Denoising feature matching is proposed as an added criterion for
training G.

e Denoising AE r() is trained on data from distribution g(h), and
estimates via r(h) — h the gradient of true log-density a'%ﬁ(h)

e Train denoising AE on h = ¢(x), with x ~ D, then r(¢(x’) — ¢(x'))
with x’ = G(z) will give the change to make h = ¢(x’)

@ Augmented training criterion for G:

arg n;(';n IEzwp(z)[)‘denoise”d)(G(z)) - I’((f)(G(Z)))H2 — Aadv |Og(D(G(Z))]
(3)

r() is trained as (C is the corruption function):

arg, ing, Expl|¢(x) — r(C(6(x)))|I?
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Experimental Setting

@ Learning synthesis models from three datasets of increasing divesity
and size: CIFAR-10, STL-10 and ImageNet
@ Isotropic Gaussian corruption noise with o =1

@ Batch normalization of discriminator, generator and all layers of
denoising AE except the output layer

Optimizing with Adam with learning rate of 10~* and 8; = 0.5,
Adenoise = 0-03/nh and Aygy =1
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CIFAR-10

Real data* Semi-supervised Unsupervised
Improved GAN (Salimans et al)* || ALI (Dumoulineral)! | Ours
11.24 £ .12 | 8.09 + .07 I 5.34 £ 0.05 [ 772+ 0.13

Table 1: Inception scores for models of CIFAR-10. * as reported in Salimans et al.| (2016); semi-
supervised I computed from samples drawn using author-provided model parameters and imple-
mentation.

Figure 1: Samples generated from a model trained with denoising feature matching on CIFAR10.
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Real data | Ours | GAN Baseline
26.08 + .26 | 8.51 £0.13 | 7.84 + .07

Table 2: Inception scores for models of the unlabeled set of STL-10.

Figure 2: Samples from a model trained with denoising feature matching on the unlabeled portion
of the STL-10 dataset.
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ImageNet

Real data | Radford eral* | Ours
BISEAT| §83L014 [OIS= .13

Table 3: Inception scores for models of ILSVRC 2012 at 32 x 32 resolution. * computed from
samples drawn using author-provided model parameters and implementation.

Figure 3: Samples from our model of ILSVRC2012 at 32 x 32 resolution.

David Warde-Farley, Yoshua Bengio (Univerdmproving Generative Adversarial Networks wi



Conclusion

© Augmented objective criterion for training generator to synthesize
distribution similar to real data distribution

@ Unsupervised training with mapping of higher dimension features of
discriminator

© Experimental evaluation on different datasets to show the
effectiveness compared to existing approaches on recovering ‘objects’
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