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Combine graphical models with neural networks: Complementary

Strengths of Deep Learning and Graphical Models
GRAPHICAL MODELS

@ (+) structured representations
@ (+) priors and uncertainty

© (+) data and computational
efficiency:efficient inference
procedures

@ (-) assumptions about data

@ (-) feature engineering
DEEP LEARNING

@ (-) hard to understand
@ (-) lot of data

@ (+) flexible: fit anything
Q (+) feature learning
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Variational Autoencoders
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Warped mixtures for arbitrary cluster shapes
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Warped mixtures for arbitrary cluster shapes
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@ Cluster data using GMM: Real data does not form nice Gaussian
clusters

@ Clusters are there but not explained correctly by GMMs
© lose the interpretability of the model
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Warped mixtures for arbitrary cluster shapes

,-Q\f
> B ,/3

(a) Data (b) GMM (c) Density net (VAE)

yep(y)  wa N0, 1), Yoo | Tos v & N (103 7)s B(wn; 7)),

© No structure in data, although captures shape correctly
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Warped mixtures for arbitrary cluster shapes
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Figure: composing a latent GMM with nonlinear observations
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O Flexibility
@ structured

Matthew James Johnson, David Duvenaud, AComposing Graphical Models with Neural Net / 24



Generatively Modeling a Video

© Neuroscientists want to do experiments on a mouse and see how it's
behavior changes
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eratively Modeling a Video

© Neuroscientists want to do experiments on a mouse and see how it's
behavior changes

@ Experiment involves recording the 'states’ of the mouse: sleeping,
running, standing, etc.
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eratively Modeling a Video

© Neuroscientists want to do experiments on a mouse and see how it's
behavior changes

@ Experiment involves recording the 'states’ of the mouse: sleeping,
running, standing, etc.

© sequence of actions

@ desired: clustering model of actions
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Generatively Modeling a Video

© Neuroscientists want to do experiments on a mouse and see how it's
behavior changes

@ Experiment involves recording the 'states’ of the mouse: sleeping,
running, standing, etc.

© sequence of actions
@ desired: clustering model of actions

© To automate this: Use a Switching Latent Linear Dynamical System
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Switching Latent Linear Dynamical System
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Combining GMs and NNs: SVAE
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Figure: composing a latent GMM with nonlinear observations
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Background: Variational Inference

© Consider a joint density of latent variables x = xy.,,, and observations
Y =Yim

@ Inference in a Bayesian model: conditioning on data and computing
the posterior p(x|y)

_ plx.y)
e p(X’y) - p(y)

@ Variational Inference: solve this problem with optimization
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Background: Variational Inference

@ posit a variational family g(z,v)
@ optimize v to make g(z,v) close to p(x|y)

p(z|x)

(8]
© Evidence Lower bound(ELBO)

Eqlog( P Y)) (1)

© Solving this maximization problem is equivalent to finding the
member of the family that is closest in KL divergence to the posterior
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Variational inference in Linear Dynamical Systems

/ N TN YN
(21— xo)—{ w3 —x4)
NN 7N AN

p(x|0) is linear dynamical system
p(y|z,0) is linear-Gaussian q(@)q(r) ~ p(@7 T | y)

p(0) is conjugate prior

[j[q(&)q(;r) ] £ Eq(@)q(:l‘) [log %]
q0) <= ne  q(z) &0

Figure: Efficient Inference for Conjugate Family distributions

If the posterior distributions p(6|x) are in the same family as the prior
probability distribution p(#), the prior and posterior are then called
conjugate distributions, and the prior is called a conjugate prior for the
likelihood function. Makes it easier to calculate posterior
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Variational inference in Linear Dynamical Systems

0,x,
£(7707 77:L’) £ ]Eq(a)q(:n) [IOg %]

ni(ne) £ argmax L(ne,7.)  Lsvi(ne) = L(ne, 1% (1))
N

Proposition (natural gradient SVI of Hoffman et al. 2013)

VLsvi(n) = 0y + E(2) (tay (2, 9), 1) — 19

Figure: Efficient Inference for Exponential Family distributions

Because the observation model p(y|x, #) is conjugate to the latent variable
model p(x|#), for any fixed q(6) the optimal factor g*(x) ,
argmaxg(x)L[q(#)q(x)] is itself a Gaussian linear dynamical system with
parameters that are simple functions of the expected statistics of g(¢) and
the data y.
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Combine Both: Structured Variational Autoencoder

Basic Idea
Keep graphical models for latent variables (the clusters), connect these to
data that doesn’t fit our assumptions

Similar to Supervised Learning: transform data into a latent space, which
separates the data
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nce in SVAE

© The main difficulty with combining rich latent variable structure and
flexible likelihoods is inference.
@ The most efficient inference algorithms used in graphical models, like

structured mean field and message passing, depend on conjugate
exponential family likelihoods to preserve tractable structure.

0 p(0) conjugate prior on global variables
(@) p(z]0) exponential family on local variables

®— p(y) any prior on observation parameters
@) p(y|x,v) neural network observation model

Matthew James Johnson, David Duvenaud, AComposing Graphical Models with Neural Net / 24



SVAE Model Class

© a conjugate pair of exponential family densities on global latent
variables 6 and local latent variables x

@ Let p(x|f) be an exponential family and let p(6) be its corresponding
natural exponential family conjugate prior

p(0) = exp {{ 779 fe 0)) - logZa U )}
p(x|0) = exp { (n;(0), t.(2)) —log Z.(n;(0)) } = exp {(te(0). (t (), 1))},
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New ELBO: SVAE

E[ q(t‘))q(’y)q(x) ] 2 Eq(e)q('y)q(z) |:10g p(o)p(’Y)p(x ‘ e)p(y | Z, 7):| .

q(0)q(v)q(x)

without conjugacy structure finding a local partial optimizer may be
computationally expensive for general densities p(y|x, A),

© general observation model means that conjugate updates and natural
gradient SVI cannot be directly applied

@ choose 7, by optimizing over a surrogate objective L with conjugacy
structure
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New ELBO: SVAE

0., v,x)p(y | =,
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the potentials have a form conjugate to the exponential family p(x|0).
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Computing SVAE gradie

Algorithm 1 Estimate SVAE lower bound and its gradients

Input: Variational parameters (7g, 7, ¢), data sample y
function SVAEGRADIENTS (7, 1)y, ¢, )

U < 1(Yn; @) > Get evidence potentials
(&, T, KL < PGMINFERENCE(7y, 1)) > Combine evidence with prior
A ~q(v) > Sample observation parameters
L+ Nlogp(y|#,%) — NKL" —KL(q(0)q(7)||p(@)p(y)) > Estimate variational bound
6,,0[: <~ n9 —ng + Nz, 1) + N(V,, logp(y | 2,%),0) > Compute natural gradient

return lower bound £, natural gradient V,, £, gradients V,_ 4L

function PGMINFERENCE(7), 1)
q*(z) < OPTIMIZELOCALFACTORS (79, %) > Fast message-passing inference
return sample & ~ ¢*(x), statistics Eq«z)t, (), divergence Eq(g) KL(q"()|[p(2|0))
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SVAE objective and natural gradient

The SVAE objective lower-bounds the mean field objective

The SVAE objective function Lgyaw lower-bounds the mean field objective L in the sense that
max L{q(®)a(v)a(x)] = max L(ng, 1y, 1) 2 Lsvar (e, 1y, 6) V6 €R™,

for any parameterized function class {r(y; ¢) }¢crm. Furthermore, if there is some ¢* € R™ such
that (Y, ¢*) = Eq(y) log p(y | z,77), then the bound can be made tight in the sense that

Igl(%d[q(e)q(v)q(x)] = n;axﬁ(ne, Nys ) = max Lsvar(ne; 1y, P)-

v

Natural gradient of the SVAE objective

The natural gradient of the SVAE objective LZSVAQ with respect to 1 can be estimated as

Vo LsVAE (M0 1> 8) = (19 + Egeiay [(t (@), 1)] = 10) + (V2 log Zo(ng)) ™ VF (1),

where F(ny) = L(ng, 1y, m5(np, ®)). When there is only one local variational factor q(z), then
can simplify the estimator to

Voo LsVAE (16, 1y, 8) = (0§ + Eqe(ay [(ta (), )] = 06) + (Vo L6, 1,15 (00, 6)), 0).
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Experiments and Results: Synthetic Data

(a) Predictions after 200 training steps. (b) Predictions after 1100 training steps.
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Experiments and Results: Synthetic Data
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(a) Natural (blue) and standard (orange) gradient updates.
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Experiments and Results: Mouse Video
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Figure 6: Predictions from an LDS SVAE fit to depth video. In each panel, the top is a sampled
prediction and the bottom is real data. The model is conditioned on observations to the left of the line.
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