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Motivation:

@ Deep neural networks (DNNs) are among the most powerful and
versatile machine learning techniques, achieving state-of-the-art
accuracy in a variety of important applications.

@ However, as the networks become more complex, computational cost
of applying them to new examples also grows higher.

@ Test-time cost, has increased rapidly for many tasks with ever-growing
demands for improved performance in state-of-the-art systems
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Performance versus Evaluation Complexity
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Figure 1. Performance versus evaluation complexity of the DNN
architectures that won the ImageNet challenge over past several
years. The model evaluation times increase exponentially with
respect to the increase in accuracy.

@ The Resnetl52 architecture with 152 layers, realizes a substantial
4.4% accuracy gain in top-5 performance over GooglLeNet on the
large-scale ImageNet dataset but is about 14X slower at test-time.
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The facts about the data:
@ Natural data is typically a mix of easy examples and difficult examples.

@ The easy examples do not require the full power and complexity of a
massive DNN.

@ Namely, easy examples could be correctly classified by using either a
simple network or the early layers in a complex network.
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Problem Setting and Previous Solution

Problem Setting:
@ Target: Shorten the test-time cost without losing much accuracy.
Previous Solution:

@ Most of the work on this topic focuses on designing more efficient
network topologies and on compressing pre-trained models using
various techniques.
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Contributions

An adaptive early-exit strategy

@ Takes a set of pre-trained DNNs, each with a different cost/accuracy
trade-off, and arranges them in a directed acyclic graph, with the the
cheapest model first and the most expensive one last.

@ They then train an exit policy at each node in the graph, which
determines whether they should rely on the current models predictions
or predict the most beneficial next branch to forward the example to.
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Contributions

An adaptive early-exit strategy
@ Allows easy examples to bypass some of the networks layers.

@ Before each expensive neural network layer (e.g., convolutional
layers), they train a policy that determines whether the current
example should proceed to the next layer, or be diverted to a simple
classifier for immediate classification.
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Contributions

The whole structure overview
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Figure 2. (Left) An example network selection system topology for networks Alexnet(A), GoogLeNet(G) and Resnet(R). Green -y blocks
denote the selection policy. The policy evaluates Alexnet, receives confidence feedback and decides to jump directly to Resnet or send
the sample to GoogLeNet->Resnet cascade. (Right) An example early exit system topology (based on Alexnet). The policy chooses one
of the multiple exits available to it at each stage for feedback. If the sample is easy enough, the system sends it down to exit, otherwise
it sends the sample to the next layer.
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A sgeuence of papers

@ Cost-sensitive learning by cost-proportionate example weighting
@ Multiclass classification with filter trees

o Efficient learning by directed acyclic graph for resource constrained
prediction
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Importance-weighted binary classification problem (WBC)

Importance-weighted binary classification problem (WBC)

@ Binary classification where each example has an associated weight
specifying how important it is to predict its label correctly.

e (x,y,w), Defined by a distribution D on X x {0,1} x [0, inf)

@ Loss function E(, , w)~p[woo(b(x) # y)], co(:) is 1 when the
argument is true and 0 otherwise.
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Cost-sensitive k-class classification problem (CSL)

Cost-sensitive k-class classification problem (CSL)
o (w, ¢)Defined by a distribution D over X x [o, inf).
@ The goal is to find a classifier h: X — {1,--- , k} minimizing the
expected cost e(h, D) = E, &)~plcn(x)]

@ Here, ¢ € [o,inf)k gives the cost of each of the k choices for x.
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Convert CSL to WBC - The Filter Tree Algorithm

Algorithm 1 The filter tree training algorithm
Filter-Train (cost-sensitive training set .S, importance-weighted binary learner Learn)

1. Fix a binary tree 7" over the labels.
2. For each internal node n in the order from leaves to roots:
(a) For each example (z,cy,...,cx) € S
i Sp =
ii. Let a and b be the two classes input to n (for internal nodes, these are the predic-
tions of the left and the right subtrees on input ).
iii. Sy, « Sp U{(z,arg min{c,, cp}, |ca — cb|)}
(b) Let predict,, = Learn(Sy,)
3. return {predict,, }

Algorithm 2 The filter tree testing algorithm
Filter-Test (classifiers {predict,, }, test example z € X)

Output the label [ such that every classifier on the path from leaf [ to the root prefers [.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, VAdaptive Neural Networks for Effective Infere| / 46



Convert CSL to WBC - The Filter Tree Algorithm

vs {winner of 3 vs 4} {winner of 5 vs 6}
vs 7

{winner of 1 vs 2}

Figure 1: Filter Tree. Each node predicts whether the left or the right input label is more likely,
conditioned on a given z € X. The final output node predicts the best label for x.

@ The training algorithm relies upon an importance weighted binary
learning algorithm, which takes examples of the form (x,y, w), where
x is a feature vector used for prediction, y is a binary label, and w is
a positive real-valued importance.

@ Importance-weighted binary classification can be further reduced to
binary classification using the Costing reduction or other methods.
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o Labeled example (x,y) € RY x {1,---, L}, where d is the dimension
of the data and {1,---, L} is the set of classes representation.

@ X X Y: the distribution generating the examples.

e For a predicted label y, they denote the loss L(y, y). In this paper,
they foucus on indicator loss L(y,y) = coj—,.
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@ Using AlexNet which is composed of 5 convolutional layers followed 3
fully connected layers as an example, during evaluation of the
network, computing each convolutional layer takes more than 3 times
longer than computing a fully connected layer

@ they consider a system that allows an example to exit the network
after each of the first 4 convolutional layers.

@ y(x) dentoes the label predicted by the network for example x and
assume that computing this prediction takes a constant time of T.

@ 0k(x) denotes the output of the k-th convolutional layer for example
X.

@ t; denotes the time it takes to compute this value (from the time
that x is fed to the input layer).

@ Jk(x) denotes the predicted label if they exit after the k-th layer.
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o After computing the k-th convolutional layer, they introduce a
decision function -y, that determines whether the example should exit
the network with a label of yx(x) or proceed to the next layer for
further evaluation.

@ Input to v is the output of the corresponding convolutional layer
0k(x) and the value of v, (dk(x)) is ether 1 or -1 (indicating an early
exit).

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, VAdaptive Neural Networks for Effective Infere| - / 46



Objective Function

Globally, our goal is to minimize the evaluation time of the
network such that the error rate of the adaptive system is no
more than some user-chosen value B greater than the full
network:

Hlil'l ]EZNX [T'yl,.”,’u (m)] . (1)
Y1yeees Y4

st B yymaxy (L0, - 7a(2),y) — L(@(z),)),] < B

Here, T),, ... -, (z) is the prediction time for example « for
the adaptive system, §y1, ..., 74(z) is the label predicted by
the adaptive system for example x.

@ The key idea is that, for each input, a policy must identify whether or
not the future reward (expected future accuracy minus comp. loss)
outweighs the current-stage accuracy.
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Learning the decision function

Using 4 which determines if an example should exit after the fourth
convolutional layer or whether it will be classified using the entire network

as an example.
The time it takes to predict the label of example x depends on this

decision and can be written as

Ta (@) = {T+Tm> ifuoa@) =1

ta+ 7(va) otherwise

where 7(4) is the computational time required to evaluate
the function 4.
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Learning the decision function

Their goal is to learn a system that trades-off the evaluation time and the
induced error:

argmin Ezox [T4(£E, 74)] + /\E(m,y)NXX)/ [(L (:lj4($), y)
vya€D

- L (gj(x), y)) 1’74(04(3:)):—1] (3)
+

where (-) is the function(z) = max(z,0) and A € R*
is a trade-off parameter that balances between evaluation
time and error.
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Learning the decision function

Ty (2,71) = (T + 7(74)) Ly, (04(2))=1
+ (ta + 7(74) Ly (0a(a))=—1
=T, (ci(z))=1 + taly, (os(z))=—1 + Ta(74)

Substituting for T (z,~y4) allows us to reduce the problem
to an importance weighted binary learning problem:

argmin Bz ).y [Ca(@,9) 1, (0a(2))£Ba(z) ] + T(74)
Y4
4
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Learning the decision function

where 34(z) and Cy4(x,y) are the optimal decision and cost
at stage 4 for the example (x, y) defined:

1T > (t4 + A(L (9a(2), 1)
Balr) = L)) )

1 otherwise

and

Calz,y) = |T = ta = AL (Ja(2), ) — L (§(2), ) |-
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Learning the decision function

For a general early exit system, we recursively define
the future time, T%(z, V%), and the future predicted label,

Tk(2,7k), as

T + (k) if ye(ow(z)) =1L, k=K
Trra(z, e ifw(on(@) =1,k< K

Ti(x =
k( 77}9) +1)+T("/k)
ty + 7(vk) otherwise
and
J(x) ifk=K+1
9(z) ifk=K
. and v (ox(x)) =1
Tz, 7k) = 9 - . (ex()) :
yk+1(£E, "Yk:+1) ifk < K 1 think this
should be 1
and i (ok(z)) = —1
i) otherwise
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Learning the decision function

For a system with K early exit functions, the k-th early exit function can
be trained by solving the supervised learning problem:

argmin E (g )t xy [Cr(:9) Ly, @)£80(0n(@)] T T(T)s
k

&)

where optimal decision and cost x(x) and Ci(x,y) can be defined:

Br(@) =

Cr(z,y) =

-1 ifk < K and Ty1 (2, Yet1) > tet

AL (Gr(2):9) = L (Gr+1(2),9))
-1 ifk=KandT > ty+

ML (Ge(@),y) = L (r+1(2), 9)) 1
1 otherwise
|Tk+1($: Yi+1) =tk

“A(L@@.9) - LEn()) |

’T—tk

ifk <K

otherwise

ML @r(@),9) — L)), |
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Learning the decision function

They seek to exploit the fact:
@ Many examples are correctly classified by relatively efficient networks
such as alexnet and googlenet.
@ Only a small fraction of examples are correctly classified by
computationally expensive networks such as resnet 152 and
incorrectly classified by googlenet and alexnet.
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@ Ni, No, N3: three pre-trained networks

@ For an example x, denote the predictions for the networks as
N1(x), Na(x), N3(x).

e 7(N1),7(Nz), 7(N3) denotes the evaluation times for each of the
networks.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, VAdaptive Neural Networks for Effective Infere|



@ ki :|X| = {Ny, Na, N3} is applied after evaluation of N; to determine
if the classification decision from Nj should be returned or if network
N> or network N3 should be evaluated for the example.

@ For examples that are evaluated on Ny, ko : | X| — {No, N3}
determines if the classification decision from N5 should be returned or
if network N3 should be evaluated.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, VAdaptive Neural Networks for Effective Infere| - / 46



@ Their goal is to learn the functions k; and k» that minimize the
average evaluation time subject to a constraint on the average loss
induced by adaptive network selection.
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They first learn ky to trade-off between the average evaluation time and
induced error

glier% Eonx [7(N3)Li,y(@)=Ns] + 7(52)

+ )\E(m,y)NXX)) [(L (NQ(QS)’ y)

_L(NS(m)’y)>+lmg(z)=N2]a (6)

where A € R™ is a trade-off parameter.
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This problem can be posed as an importance weighted supervised learning
problem

,gliEI%E(rfy)NXxy [(Wa(2, ) Liy(2)202(z)] + T(K2), (D)

where 05 (z) and Wy (z, y) are the cost and optimal decision
at stage 4 for the example/label pair (z,y) defined:

_ ) N2 if7(Ng) > A(L (N3(z),y) — L (Na(z),)) 4
b2(z) N3 otherwise

and

Wa(,y) = |[r(Na) = A (L (Na(a), y) — L (N3 (@),9))., |
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@ Once ko has been trained, the training times for examples that pass
through N5 and are routed by k» can be defined
Tio(x) = T(N2) + 7(k2) + 7(N3)00k (x)=N;

@ they train and fix the last decision function, kp, then train the earlier
function, k. As before, they seek to trade-off between evaluation
time and error:

mér% E,ox [T(N3)]].n1(z):N3 + T(Ng)]lm:Nz] + 7(k1)+
K1

)‘E(z,y)NXxy (L (N2(m)’ y) —L (NS(m)a y))+ ]lf-al (z)=N

+ (L (N1(2),y) — L (N3(2),9)) 4 L, (2)=n, ®
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-

This can be reduced to a cost sensitive learning problem:

min E(z,y)NXX)) R; (E, y)]lnl (z)=N3 + Rg(ﬂi‘, y)]lnl (z)=No

k1€l

+R1 (Ia y)]lnl (z)=N1:| + T(K/l)a (9)

where the costs are defined:
Ri(z,y) = (L(N1(z),y) — L(N3(x),9)),.
Ro(z,y) = (L(N2(2),y) — L(N3(z),y)) ; + 7(N2)
R3(z,y) = 7(Ns).
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Algorithm 1 Adaptive Network Learning Pseudocode

Input: Data: (z;, ;)" ,
Models S, routes, E, model costs 7(.)),
while 3 untrained 7 do
(1) Choose the deepest policy decision j, s.t. all down-
stream policies are trained
for example : € {1,...,n} do
(2) Construct the weight vector w; of costs per ac-
tion from Eqn. (7).
endfor lnosres
A3 Tj <Learn le.((ﬁl, 161), ey (ﬁn, 117”))
(4) Evaluate 7; and update route costs to model j:
C(&i, Yis 5n, 85) = W] (mj(:)) + C(@s, i 5n, 85)
end while
(5) Prune models the policy does not route any example
to from the collection
Output: Policy functions, 71, ...,7Tx
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Learn k; (From Previous paper)

A single iteration of Algorithm 1 proceeds as follows:
1. A node j is chosen whose outgoing edges connect only to leaf nodes.

2. For each example, the costs associated with each connected leaf node
are found.

3. The policy ¢; is trained on the entire set of training data according to
these costs by solving a CSL problem.

4. The costs associated with taking the action ¢; are computed for each
example, and the costs of moving to state j are updated.

5. Outgoing edges from node j are removed (making it a leaf node).

6. disconnected nodes (that were previously connected to node j) are
removed.

The algorithm iterates through these steps until all edges have been
removed.
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Network Selection

o Task: Imagenet 2012
classification

@ Baselines, they compare against
a uniform policy and a myopic

;

policy which learns a single full tree
threshold based on model o o
confidence.
a->r50
@ Report performance from
different system topologies. ° 6 >°
@ The soft oracle has access to
a->g->r50

classification labels and sends

top5S@ | policy myopic uniform

each example to the fastest @1 | 28X 19X 18X
model that correctly classifies o AR SRE =X
the example.
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Network Selection

They sweep the cost trade-off parameter in the range 0.0 to 0.1 to achieve
different budget points.
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Figure 3. Performance of network selection policy on Imagenet (Left: top-5 error Right: top-1 error). Our full adaptive system (denoted
with blue dots) significantly outperforms any individual network for almost all budget regions and is close to the performance of the
oracle. The performances are reported on the validation set of ImageNet dataset.
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Network Early Exits

Network policy top-5 | uniform top-5
GoogLeNet@ 1 9% 2%
GoogLeNet@2 22% 9%
GoogLeNet@5 33% 20%
Resnet50@1 8% 1%
Resnet50@2 18% 12%
Resnet50@5 22% 10%

Table 1. Early exit performances at different accuracy/budget
trade-offs for different networks. @x denotes x loss from full
model accuracy and reported numbers are percentage speed-ups.
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Network Selection

@ Accuracy gains per evaluation
time for different layers.

@ Interestingly, the accuracy gain
per time is more linear within
the same architecture compared
to different network
architectures.

@ This explains why the adaptive
policy works better for network
selection compared to early
exits.

time / img (ms)

Figure 5. The plots show the accuracy gains at different layers for
early exits for networks GoogLeNet (top) and Resnet50 (bottom).
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@ They proposed two different schemes to adaptively trade off model
accuracy with model evaluation time for deep neural networks.

@ They posed a global objective for learning an adaptive early exit or
network selection policy and solved it by reducing the policy learning
problem to a layer-by-layer weighted binary classification problem.

@ They demonstrated that significant gains in computational time is

possible through their novel policy with negligible loss in accuracy on
ImageNet image recognition dataset.
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