Neural Architecture Search for Reinforcement Learning

Barret Zoph , Quoc V. Le !
1Google Brain

ICLR 2017/ Presenter: Ji Gao

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for Reinforcement ICLR 2017/ Presenter: Ji Gao 1/19

Outline

© Motivation

© Method
@ Overview
@ More complicated model structure

© Experiment

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for Reinforcement ICLR 2017/ Presenter: Ji Gao 2 /19

Motivation

@ Choose neural network architecture is hard: Need expert knowledge
and ample time

@ Motivation of this paper: Automatically design neural network
architecture.

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for Reinforcement ICLR 2017/ Presenter: Ji Gao 3/19

@ Hyperparameter optimization: Limited in a fixed-length space.

@ Neuro-evolution algorithms: Flexible but not applicable in large scale.
@ Other related topics:

o Program synthesis

e End-to-end sequence to sequence learning

o Neural Turing Machine

e Learning to learn, meta-learning

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for Reinforcement ICLR 2017/ Presenter: Ji Gao 4 /19

Method overview

@ Based on the observation that the structure and connectivity of a
neural network can be specified as a variable-length string.

@ A controller generate the hyperparameters.

Sample architecture A
with probability p

v

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

J

Compute gradient of p and
scale it by R to update
the controller

Figure 1: An overview of Neural Architecture Search.

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for Reinforcement ICLR 2017/ Presenter: Ji Gao 5/19

Controller

@ The controller works like this: A RNN generator.

“Layern-1 Layer N Layer N+1

Figure 2: How our controller recurrent neural network samples a simple convolutional network. It
predicts filter height, filter width, stride height, stride width, and number of filters for one layer and
repeats. Every prediction is carried out by a softmax classifier and then fed into the next time step
as input.

(Google Brain) Neural Architecture Search for Reinforcem / Presenter: Ji Gao

Optimize the controller

Parameters of the controller: 8. How should 6 be optimized?
Use the accuracy of the sampled, trained network.

Reinforcement learning: Treat the accuracy as the reward R

Suppose each time the controller generates T hyperparameters aj..at
(actions in this setting), we optimize the expectation of Reward:

J(0) = Ep(ay..ar0)[R(a1--a7)]

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for Reinforcement ICLR 2017/ Presenter: Ji Gao 7 /19

REINFORCE algorithm

Problem: R is non-differentiable. How can we get VyJ(6)?
Use policy gradient methods. REINFORCE algorithm is one of them.
We know that

VoJ(0) = VoP(A; 0)R(A)
A

- Z P(A;0)Vglog P(A; 0)R(A)
A
= EP(A;Q)[VQ Iog 'D(A)R(A)]

This is called the REINFORCE trick

@ And the expectation can be approximate by sampling.

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for Reinforcement ICLR 2017/ Presenter: Ji Gao 8 /19

Optimize the controller network

e Equation is:

-
VoJ(0) = E[Vglog P(at|ar..a;1;6)R]
t=1
1 m T
~ . Z Z Vo log P(a¢|ar..ar—1; 0) R
k=1 t=1
@ Each time the controller generate a batch of m group of
hyperparameters.
@ m networks are trained to get the accuracy(reward).
@ 6 is then updated by the gradient.
@ In real practice, the equation is actually

1 m T
. Z Z Vo log P(a¢|ai..at—1;0)(Rx — b)
k=1 t=1
to reduce bias. In their experiment, b is set to be the exponential

aala’ ake) - Lraoge (O ne _nro a 3 a = o2 = e
Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for Reinforcement ICLR 2017/ Presenter: Ji Gao 9 /19

Distributed training to accelerate

@ Training a child network take hours
@ Train distributedly to accelerate

@ Multiple controller run multiple child models.

Parameters
O,

Accuracy

R
child .| cnia
Replica 1 Replica m

Figure 3: Distributed training for Neural Architecture Search. We use a set of .S parameter servers
to store and send parameters to K controller replicas. Each controller replica then samples m archi-
tectures and run the multiple child models in parallel. The accuracy of each child model is recorded
to compute the gradients with respect to ., which are then sent back to the parameter servers.

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for ReinforcementICLR 2017/ Presenter: Ji Gao

Skip connections

@ Skip connections exist in Googlenet and ResNet, which are crucial.
@ Add an anchor node to handle such skip connections

P(Layer j is an input to layer i) = sigmoid(vTtanh(Wp,evhj—i—Wcu,,h-))

N-1 skip connections.

Anchor }

Stride
Point

Height |‘.

Stride

% |of Filters width [,

Number| Filter Filter
L Height [| width |\

Anchor
Point

Number|
of Filters|,

Filter
Height [

2 . W
Layer N-1 Layer N

Layer N+1

Barret Zoph , Quoc V. Le

(Google Brain) Neural Architecture Search for ReinforcementICLR 2017/ Presenter: Ji Gao

11 /19

Recurrent layers

@ Model recurrent structure as linking the inputs: x; and h;_1

e Controller RNN produce combination methods (addition, elementwise
multiplication, etc.) and activation functions (tanh, sigmoid, etc.) to
merge inputs and produce one output.

Xt Tree Index 0 Tree Index 1 Tree Index 2 Cell Inject Cell Indices

Figure 5: An example of a recurrent cell constructed from a tree that has two leaf nodes (base 2)
and one internal node. Left: the tree that defines the computation steps to be predicted by controller.
Center: an example set of predictions made by the controller for each computation step in the tree.
Right: the computation graph of the recurrent cell constructed from example predictions of the
controller.

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for ReinforcementICLR 2017/ Presenter: Ji Gao

Experiment design

Data:
e CIFAR-10
@ Penn Treebank

The child network are tested using a validation dataset. Reported
performance on the test set is computed only once.

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for ReinforcementICLR 2017/ Presenter: Ji Gao 13 /19

CIFAR10

CNN for CIFAR1O0 task.
Details:

e Conv layers with Relu: filter height and width in [1, 3, 5, 7] and a
number of filters in [24, 36, 48, 64].

@ For strides, test both 1 and [1, 2, 3].

@ Also batch normalization and skip connections between layers
For the controller:

@ Two-layer LSTM with 35 hidden units on each layer.

@ Optimized with the ADAM with a learning rate of 0.0006.

o Initialization: Between -0.08 and 0.08.

@ Number of parameter server shards S= 20, Number of controller
replicas K=100 and the number of child replicas m=8, which means
there are 800 networks being trained on 800 GPUs concurrently at
any time.

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for ReinforcementICLR 2017/ Presenter: Ji Gao 14 /19

=
|
n
()
| -
()
—
o
xS
)

2 ')v\m‘I

<

15 / 19

o
©
¢
=
@
£
o)
2
4
4
a
=
=
[=]
N
@
-
=
=
c
3
=
[
2
2
g
3
L
o
5
3
(%]
g
3
=
1%
I3
2
=
g
<
©
®
5]
z
=
i
©
e
°
b0
o
o
<

, Quoc V. Le

Barret Zoph

CIFAR10

Model | Depth Parameters | Error rate (%)

Network in Network (Lin et al., 2013) - 8.81
All-CNN (Springenberg et al., 2014) - 7.25
Deeply Supervised Net (Lee et al., 2015) - 797
Highway Network (Srivastava et al., 2015) - 7.72
Scalable Bayesian Optimization (Snoek et al., 2015) - 6.37
FractalNet (Larsson et al., 2016) 38.6M 522
with Dropout/Drop-path 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016¢)) \ 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016c) 110 1.7M 5.23
1202 102M 491

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 481
28 36.5M 4.17

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k£ = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.

Ji Gao 16 /

Penn Treebank

Task: Build a good language model
Details:

@ For each node in the tree, select a combination method in [add, elem
mult] and an activation method in [identity, tanh, sigmoid, relu].

@ The number of input pairs to the RNN cell=8

e Use perplexity(efﬁ 2.iInP()) instead of accuracy in this case

Controller:
@ Similar to the CIFAR-10 experiments
@ learning rate for the controller RNN is 0.0005

o Distributed setting: S=20, K=400 and m to 1, which means there are
400 networks being trained on 400 CPUs

Try to combine with the method of sharing Input and Output embeddings

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for ReinforcementICLR 2017/ Presenter: Ji Gao 17 /19

Penn treebank result

identity)
elem_mult

sigmoid @ add

Figure 8: A comparison of the original LSTM cell vs. two good cells our model found. Top left:
LSTM cell. Top right: Cell found by our model when the search space does not include max and
sin. Bottom: Cell found by our model when the search space includes max and sin (the controller
did not choose to use the sin function).

arret Zoph

Quoc

(Google Brain) Neural Architecture Search for Reinforcer ICLR 2017/ Presente

Penn Treebank

Model | Parameters Test Perplexity
Mikolov & Zweig (2012) - KN-5 om# 141.2
Mikolov & Zweig (2012) - KN5 + cache oM* 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA ™* 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM* 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net smi 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) 66M 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 79.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M 78.6
Gal (2015) - Variational LSTM (large, untied) 66M 75.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M 73.4
Kim et al. (2015) - CharCNN 19M 78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings 51M 73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21M 70.9
Inan et al. (2016) - VD-LSTM + REAL (large) 5IM 68.5
Zilly et al. (2016) - Variational RHN, shared embeddings 24M 66.0
Neural Architecture Search with base 8 32M 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64.0
Neural Architecture Search with base 8 and shared embeddings 54M 62.4

Barret Zoph , Quoc V. Le (Google Brain) Neural Architecture Search for ReinforcementICLR 2017/ Presenter: Ji Gao 19

	Motivation
	Method
	Overview
	More complicated model structure

	Experiment

