Learning to Learn

Presenter: Ceyer Wakilpoor

Nando de Freitas

Departmen of Computer Science, University of Oxford

June 2017

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017

@ Introduction
@ Learning to Learn
@ Motivation

© Learning Optimization Algorithms
@ The Model
@ Experiments
@ Limitations

© Leaming Optimizers that Scale and Generalize
@ Model
@ Results

@ Learning to Learn without Gradient Descent by Gradient Descent
© Few-Shot Learning

@ Reinforcement Learning

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 2/32

Outline

0 Introduction

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017

Learning earn

@ A lot of competitions in deep learning applications, imagine next big
problem to solve

@ Look to a very small phenomena of the human brain - we know how
to learn
o Child playing and figuring out a simple puzzle

e Knowing to taste and touch things, knowing to try to get sensory
information

e Evolution and community also serve as learning methods, there is
learning at a lot of timescales

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 4 /32

@ DNNs work very well when given a lot of data, but are not necessarily
good at figuring out how to learn from few data, or how to learn
optimally

@ How can a neural network be used to learn another neural network

@ Cases of learning to learn

MCMC sampling

NN making samples for another NN

NN generate the parameters and/or architecture for another NN
Programmable NNs

NN controlling behavior of another NN, like reinforcement learning,
gating (choosing bias, activation, etc)

Learning optimization algorithms

@ Common practice of taking GD, applying transformation and seeing if
it performs better on some popular data set

@ Engineering optimizers is like feature engineering

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 5/32

Outline

e Learning Optimization Algorithms

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017

Learning Optimization Algorithms

@ Using a NN to adjust the parameters of another NN

@ Should be treated as one NN in the end, no more algorithm for a
network, just one "dynamic” NN

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 7/32

The Model

@ Two networks, an optimizer and an optimizee, for example:

e optimizee, f, implements a conv-net
e optimizer, an RNN that gives f gradients and other information

o Take a parameter, run through optimizee, get gradient, plug into
optimizer which gives update for the initial parameter, and repeat
with another parameter

@ The optimizer can be transferred to different optimizees
@ g: optimizer, ¢: optimizer's parameters, f: optimizee, 0: optimizee
parameters

Orv1 = 0: + g:(VE(0:), 0)

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 8 /32

optimizer optimizee
€rror Signa\

Figure 1: The optimizer (left) is provided with
performance of the optimizee (right) and proposes
updates to increase the optimizee’s performance.
[photos: Bobolas, 2009, Maley, 2011]

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 9 /32

The Model

e Optimizee parameters, 0*(f, ¢), as a function of optimizer parameters
¢, yields the loss function (which is minimized by gradient descent):

L(¢) = Ef[f(6"(f, 9))]

@ g: is the output of RNN, m, parametrized by ¢, whose state is
denoted by h;

-
L(¢) = Ef[z wef(0¢)]
t=1

where
Ori1 =0:+ gt

[8t } = m(Vgf(0:), he, &)

het1

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 10 / 32

The Model

Optimizee

Optimizer

Figure 2: Computational graph used for computing the gradient of the optimizer.

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017

Th odel

@ Use coordinatewise network architecture in order to allow one
optimizer to learn updates for all of the optimizees parameters

@ Otherwise optimizer would require a hidden layer for each parameter;
when replicated over all the hidden states, this becomes too large

Figure 3: One step of an LSTM optimizer. All
LSTMs have shared parameters, but separate hid-
den states.

June 2017 12 / 32

Nando de Freitas (Departmen of Computer ¢ Learning to Learn

Transferring the Optimizer

Goal was to minimize:

f(0) = |W0 —ylf3

Trained small network with 20 hidden units on MNIST
Optimizer had 100 optimization steps (number of timesteps for RNN)
o Performed better than RMSprop, Adam, etc

Transferred to 40 units successfully

Unrolled to 200 timesteps and tried on optimizee with 2 layers, and
finally optimizee with using RelU instead of TanH

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 13 / 32

Quadratics MNIST MNIST, 200 steps

A -=- ADAM
10t I
¥y === RMSprop

— [OOSR
60 80 100 120 140 160 180 200
Step

Figure 4: Comparisons between learned and hand-crafted optimizers performance. Learned optimiz-
ers are shown with solid lines and hand-crafted optimizers are shown with dashed lines. Units for the
y axis in the MNIST plots are logits. Left: Performance of different optimizers on randomly sampled
10-dimensional quadratic functions. Center: the LSTM optimizer outperforms standard methods
training the base network on MNIST. Right: Learning curves for steps 100-200 by an optimizer
trained to optimize for 100 steps (continuation of center plot).

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 14 / 32

MNIST, 40 units MNIST, 2 layers MNIST, ReLU

—- ADAM
. === RMSprop
AN R
W SGD
DAY -=- NAG
RN ~
RN ~ —— LSTM
ARRY -~
ANONY
N R RN
N S
o
C¥Ay

Steps

Figure 5: Comparisons between learned and hand-crafted optimizers performance. Units for the
y axis are logits. Left: Generalization to the different number of hidden units (40 instead of 20).
Center: Generalization to the different number of hidden layers (2 instead of 1). This optimization
problem is very hard, because the hidden layers are very narrow. Right: Training curves for an MLP
with 20 hidden units using ReLU activations. The LSTM optimizer was trained on an MLP with
sigmoid activations.

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017

Did not perform well when optimizee was using ReLU activation
functions

Difficult with large number of parameters

Difficult task, evolution (a very expensive operation) was needed to
teach humans how to learn

@ A trained optimizer will have no hyper parameters, but does need to
be trained using classical optimization methods

Usually can’t generalize to loss functions it wasn't trained on

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 16 / 32

Outline

© Learning Optimizers that Scale and Generalize

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 17/

Scaling and Generalizing

@ Train on lots of different data sets, random functions, fundamental
optimization functions, etc

@ More variation instead of a lot of data sets from the same domain

@ Used hierarchical LSTM

o Utilize optimization insights like normalization

@ Training on different lengths

@ Used truncated back-propagation

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 18 / 32

Hierarchical RNN

[Global RNN]

B N
1@ ™

[Tensor RNN J [Tensor RNN J [Tensor RNN] s

Inputs
Scaled gradients, ———|

Outputs
Parameter RNN Update direction,
change in magnitude, ...

i

Figure 1. Hierarchical RNN architecture. At the lowest level, a
small Parameter RNN processes the inputs and outputs (Section
3.3) for every parameter (6;;) in the target problem. At the in-
termediate level, a medium-sized Tensor RNN exists for every
parameter tensor (denoted by 6;) in the target problem. It takes as
input the average latent state across all Parameter RNNs belong-
ing to the same tensor. Its output enters those same Parameter
RNNS as a bias term. At the top level, a single Global RNN re-
ceives as input the average hidden state of all Parameter RNNs,
and its output enters the Tensor RNNs as a bias term and is added
to the Parameter RNN bias term. This architecture has low per-
parameter overhead, while the Tensor RNNs are able to capture
inter-parameter dependencies, and the Global RNN is able to cap-

ture inter-tensor dependencies.
<

2017 19

Nando de Freitas (Departmen of Computel Learning to Learn

Objective

Objective

Nando de Freitas (Departmen of Computer ¢

(a) Multilayer perceptron (MLP) on MNIST w/ ReLU

10% - —— RMSProp
T —— ADAM
102 H Previous (L2L)
0.1 —— Ours (Learned)
100 - I 0 20k
=/’ 1 1 1 1
0 20k 40k 60k 80k 100k

(b) ConvNet on MNIST w/ ReLU

12
10 1

107 04 ‘&kw
2
10 0 20k
—
I 1 T | T 1
0 20k 40k 60k 80k 100k

Iteration

Learning to Learn

June 2017

20 / 32

Inception V3 12 Resnet V2

Training Loss

4M 8M 12M 16M ™ M 3M 4M
Training Training
[— Leamed — RMSProp — ADAM — SGD+Momemum]

@ More robust to different learning rates

(le-2 - lel — 1lel]

Learned ADAM RMSProp

WRVIRTRT YRYY
A TRV

Training Loss (Log Scale)

0 1K 2K 3K 0 1K 2K 3K 0 1K 2K 3K

Figure 5. Learned optimizer performance is robust to learning
rate hyperparameter. Training curves on a randomly generated

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 pal

Outline

@ Learning to Learn without Gradient Descent by Gradient Descent

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 22 /32

@ Motivation from Bayesian optimization

In Gaussian optimization you want to sample the function at certain
points to determine the function and find the optimum

Useful technique for turning NN hyperparameters
Idea is to utilize the optimizer RNN to do this instead

Trained on simple Gaussian Process functions

GP generates a continuous domain where every point in some input
space is from a normally distributed random variable

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 23 /32

@ Notion of balancing exploiting a good direction vs exploring new ones

@ Teaching optimizer to sample from limited sampling size, how to learn
from a few

T
Lsum(e) - IE‘:f,yl:Tfl[Z f(Xt)]
t=1

T

LE/(G) = _Ef,yl:T—l[Z EI(Xt|y1:t71)]
t=1

-
Loi(8) = Eryyir—1[)_ min{f(x:) — mini<e((x:)), 0}]

t=1

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 24 /32

X2 Yi2

Figure 1. Computational graph of the learned black-box optimizer unrolled over multiple steps. The learning process will consist of
differentiating the given loss with respect to the RNN parameters

Nando de Freitas (Departmen of Compu Learning to Learn June 2017 25

GP samples, dim=1

Min function value

-1.41

20 40 60 80

GP samples, dim=6

Min function value

Figure 3. Average minimum observed function value, with 95% confidence intervals, as a function of search steps on functions sampled
from the training GP distribution. Left four figures: Comparing DNC with different reward functions against Spearmint with fixed and
estimated GP hyper-parameters, TPE and SMAC. Right bottom: Comparing different DNCs and LSTMs. As the dimension of the search

Min function value

GP samples, dim=3

-1.0
—— Spearmint
—1.5 Spearmint Fixed Hyper-parameters
— TPE
-2.04 —— SMAC
—— DNCsum
—254 —— DNCoOI
—— DNCEI
-3.04
0 20 40 60 80 100
0 GP samples, dim=9 o Compare DNC vs LSTM, dim=6
—— DNC sum
3 -~ LSTMsum
© — DNCOI
Z -- LsTMOI
~ 52 — DNCEI
- = - = LSTMEI
= 2 -3 S
N K = N
= c -
— =t
— =
T -5
20 40 60 80 100 o 20 40 60 80 100

space increases, the DNC’s performance improves relative to the baselines.

Nando de Freitas (Departmen of Computer

Learning to Learn

Outline

© Few-Shot Learning

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 27

Few-Shot Learning

@ Same model as before done again with 5 images of training, and 2 for
test

@ Repeat with a lot of small data sets

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 28 / 32

Outline

@ Reinforcement Learning

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017

Reinforcement Learning For NN Architecture

@ Optimizer RNN generate structure for another optimizee RNN
@ Optimizer will receive reward based on how the optimizee does

o Very expensive task

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 30/ 32

One-Shot Reinforcement Learning

@ Problem with a lot more variance
@ Take policy network and condition off of demonstration

@ When given a new demonstration at test time, model has learned how
to react to it

@ Model is trained to imitate demonstration

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 31/32

https://arxiv.org/pdf/1703.07326.pdf
https://openreview.net/pdf?id=rJY0-Kcll
https://arxiv.org/abs/1611.05763
https://arxiv.org/abs/1606.04474
https://arxiv.org/pdf/1703.04813.pdf

Nando de Freitas (Departmen of Computer ¢ Learning to Learn June 2017 32/32

	Introduction
	Learning to Learn
	Motivation

	Learning Optimization Algorithms
	The Model
	Experiments
	Limitations

	Learning Optimizers that Scale and Generalize
	Model
	Results

	Learning to Learn without Gradient Descent by Gradient Descent
	Few-Shot Learning
	Reinforcement Learning

