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Definition

Take the things were most interested in achieving and apply to
computation

Apply probability theory to numerics (computation cores)
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Learning Algorithms

Use numeric functions as learning algorithms

Idea is to use Bayesian probability theories
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Rosenbrock
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Rosenbrock

Easy to graph on a computer

No easy way of finding its global optimum

Reason: computational limits from the optimization problem
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Uncertainty

Epistemically uncertain about the function due to being unable to
afford computation

Probabilistically model function and use tools from decision theory to
make optimal use of computation
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Probability

Probability is an expression of confidence in a proposition

Probability theory can quantify inverse of logic expression

Depends on the agent’s prior knowledge
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Gaussian Distribution

Allows for distributions for variables conditioned on any other observed
variables
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Gaussian Process

A Gaussian process is the generalization of a multivariate Gaussian
distribution to a potentially infinite number of variables

Gives us the limit of potentially infinite number of variables
infinitesimally closer together represented by an infinite-length
dimension vector

Provides non-parametric model for functions defined by mean and
covariance
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Gaussian Process

Infinite number of variables
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Gaussian Process

Non-parametric model
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Gaussian Process

Complexity that grows with data

Robust to overfitting
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Gaussian Process
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Gaussian Process
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Bayesian Optimization

Bayesian optimization is the approach of probabilistically modelling
f(x,y) and using decision theory to make optimal use of computation

by defining the costs of observation and uncertainty, we can select
evaluations optimally by minimizing the expected loss with respect to
a probability distribution

Representing the core components: cost evaluation and degree of
uncertainty
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Loss

loss function - lowest function value found after algorithm ends

Take a myopic approximation and consider only the next evaluation

The expected loss is the expected lowest value of the function we’ve
evaluated after the next iteration
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Myopic Loss

Consider only with one evaluation remaining, the loss of returning value y
with current lowest value µ
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Expected Loss

Expected loss is the expected lowest value
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Expected Loss

Use a Gaussian process as the probability distribution for the objective
function
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Expected Loss

Exploitative step
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Expected Loss

Exploratory step
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Tuning

Tuning to cope with model parameters like periods

Optimization gives a reasonable heuristic

But Bayesian optimization better
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Bayesian Optimization

Better representation across hyperparameters
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Bayesian Optimization

Tune convolutional neural networks
Allows defining the right prior information
Snoek, Larochelle and Adams (2012)
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Bayesian Optimization

Automated structure learning
Swersky et al (2013)
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Noise

Using only a subset of the data gives a noisy likelihood evaluation

Use Bayesian optimization for stochastic learning
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Noise

Within Bayesian Optimization noise is not a problem

If additional noise in the random variable we can just add a noise
likelihood to complement model

Encode that cost as a function of the number of data

Intelligently choose the size of data that it needs at runtime to best
optimization
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Bayesian Optimization

Batch size
Klein, Falkner, Bartels, Hennig , Hutter (2017);
McLeod, Osborne Roberts (2017)
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A Random Number

is epistemic (personal particular to an agent) (computation is always
conditional on prior knowledge)

use useful to foil a malicious adversary (few in numerics)

is never the minimizer of an expected loss (only when totally flat)
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Optimization

Naive fitting can lead to overfitting
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Integrating

Reduces overfitting and estimates uncertainty
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Integrating

Don’t average use quadrature
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Bayesian Quadrature

Trapezoid method
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Model

Propagates uncertainty
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Model

Converges
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