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Introduction

Gradient descent optimizers are commonly used as black-box
optimizers

The goal of this paper is to provide intuitions regarding the behaviour
of different algorithms in practice

Goes over the motivation behind different algorithms and their
derivation
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Basics

Gradient descent is a way to minimize an objective function J(θ)

Updating θ in the direction opposite of the gradient of J(θ) w.r.t. θ

There’s a learning rate η that scales how far in the negative gradient
direction you update the weights

θ+ = θ0 − η · ∂J(θ)∂θ

Sebastian Ruder ( Insight Centre for Data Analytics)An Overview of Gradient Descent Optimization Algorithms June 2017 6 / 38



Outline

1 Introduction
Basics

2 Gradient Descent Variants
Basic Gradient Descent Algorithms
Limitations

3 Gradient Descent Optimization Algorithms

4 Visualization

5 What to Use

6 Parallelizing and Distributing SGD

7 Additional Strategies

Sebastian Ruder ( Insight Centre for Data Analytics)An Overview of Gradient Descent Optimization Algorithms June 2017 7 / 38



Outline

1 Introduction
Basics

2 Gradient Descent Variants
Basic Gradient Descent Algorithms
Limitations

3 Gradient Descent Optimization Algorithms

4 Visualization

5 What to Use

6 Parallelizing and Distributing SGD

7 Additional Strategies

Sebastian Ruder ( Insight Centre for Data Analytics)An Overview of Gradient Descent Optimization Algorithms June 2017 8 / 38



Batch Gradient Descent

θ = θ − η · OθJ(θ)

Most straight forward GD method, update parameters once per
iteration of whole training dataset

Intractable when whole data set can’t fit in memory

Can’t train online (with new examples on-the-fly)

Batch GD is guaranteed to converge to the global minimum for
convex error surfaces and to local minimum otherwise
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Stochastic Gradient Descent

θ = θ − η · OθJ(θ; x (i); y (i))

SGD performs an update for every training example, which means you
can do online training

SGD updates have much higher variance which causes the objective
function to fluctuate heavily
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Stochastic Gradient Descent

It is much faster since there are fewer repeated gradient
computations; this happens because the weights are changed after
every training example

The large fluctuations can be useful in getting to better local
minimum, but for convergence to an exact minimum it can be worse

Needed to decrease learning rate through steps in order to match the
convergence claims of batch gradient descent
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Mini-Batch Gradient Descent

θ = θ − η · OθJ(θ; x (i :i+n); y (i :i+n))

Best of both worlds: performs update for every mini-batch of n
training examples

This will reduce the variance of the parameter updates, leading to a
more stable convergence
Can avoid redundant computations and makes use of highly optimized
matrix optimizations common state-of-the-art deep learning libraries

Common mini-batch sized range between 50 and 256

SGD is commonly used to refer to mini-batch GD as well

Vanilla mini-batch GD does not guarantee good convergence
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Code

Batch GD

SGD

Mini-batch GD
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Limitations

Choosing a proper learning rate: too small will take too long and too
large can lead to divergence

Constant learning rate through learning process usually is not ideal, so
need to schedule learning rate changes in a predefined way

Fail to take into account properties of data, may want to update more
for rarely occurring features

Deep learning leads to very complex non-convex error functions

Get stuck in local minima, or more commonly in saddle points
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Saddle Points

A point where one dimension slopes up while another slopes down,
usually surrounded by a plateau of about equal error

Regardless of the direction GD goes, it is difficult to escape because
the surrounds gradients are usually around zero
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Momentum

vt = γvt−1 + ηOθJ(θ)

θ = θ − vt

γ is usually selected to be around .9
SGD has trouble navigating areas where the surface curves more
steeply in one dimension than in another (ravines)
This is common around local minima
Like a ball rolling down a valley, increase gradient for dimension that
stays constant and decrease for the dimension that changes direction
Leads to faster convergence and fewer oscillations
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Nesterov Accelerated Gradient

Notion of ball knowing to slow down when hill slopes up again

Only difference is the gradient is computed of the predicted next
parameter values (looking ahead)

vt = γvt−1 + ηOθJ(θ − γvt−1)

θ = θ − vt

Prevents us from going too fast and results in significant increase in
performance of RNNs
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Adagrad

Allows individualized parameter update depending on importance,
larger updates for infrequent parameters and smaller updates for
frequent ones

Well suited for sparse data, uses different learning rate for every
parameter at every time step

gt,i = OθtJ(θt,i )

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i

θt+1 = θt −
η√

Gt + ε
� gt
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Adagrad

Gt ∈ Rdxd where each diagonal element i , i is the sum of the squared
for the gradients w.r.t. θ

ε is the smoothing term to avoid dividing by zero

Learning rate usually by default set to .01

Accumulates squared gradients in the denominator so can stop
learning eventually
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Adadelta

Works to solve the issue of monotonically decreasing learning rate

Fixes sum of gradients window to some fixed size w

In order to avoid storing all the gradients, just use a decaying average:

E [g2]t = γE [g2]t−1 + (1− γ)g2
t

keep γ usually around .9 similar to momentum

Simply replace our previous Adagrad update rule with an
exponentially decaying average

θt+1 = θt −
η√

E [g2]t + ε
gt
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Adadelta

They wanted the update units to match the parameter so they used
the square of the parameters instead of the gradients in lieu of the
learning rate:

E [∆θ2]t = γE [∆θ2]t−1 + (1− γ)∆θ2t

RMS [∆θ]t =
√

(E [∆θ2]t + ε

∆θt = −RMS [∆θ]t−1
RMS [g ]t

gt

θt+1 = θt + ∆θt

Sebastian Ruder ( Insight Centre for Data Analytics)An Overview of Gradient Descent Optimization Algorithms June 2017 23 / 38



RMSProp

Identical to the first steps of derivation for Adadelta

E [g t ]t = .9E [g2]t−1 + .1g2
t

θt+1 = θt −
η√

E [g2]t + ε
gt

Suggested γ of .9 and η of .001

Avoids radically diminishing learning rate from Adagrad
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Adam

Adaptive Moment Estimation

In addition to storing exponentially decaying average of past squared
gradients, vt , also keeps exponentially decaying average of past
gradients, mt

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

Estimates of the first moment (the mean) and the second moment
(the uncentered variance) of the gradient respectively
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Adam

Avoid zero bias, especially at initial time steps:

m̂t =
mt

1− βt1

v̂t =
vt

1− βt2
Yields final update rule:

θt+1 = θt −
η√

v̂t + ε
m̂t

Estimates of the first moment (the mean) and the second moment
(the uncentered variance) of the gradient respectively

Suggested default values of .9 for β1, .999 for β2, and 10−8 for ε

Shown to work better than other methods
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AdaMax

Scales gradient inversely proportionally to the l2 norm of the past
gradients

vt = β2vt−1 + (1− β2)|gt |2

Using l∞:
ut = β∞2 vt−1 + (1− β∞2 )|gt |∞

= max(β2 · vt−1, |gt |)

θt+1 = θt −
η

ut
m̂t

using the max operation avoids bias towards zero

Good default values are η = .002, β1 = .9, and β2 = .999
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Nadam

Combine NAG and Adam, first incorporate NAG into Adam:

gt = OθtJ(θt − γmt−1)

mt = γmt−1 + ηgt

θt+1 = θt −mt

To avoid extra computation, we can use mt to look ahead instead of
computing the momentum for t-1 and t

gt = OθtJ(θt)

mt = γmt−1 + ηgt

θt+1 = θt − (γmt + ηgt)
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Nadam

Including Nesterov momentum to Adam, first take our previous
derivation of Adam and expand the terms:

mt = β1mt−1 + (1− β1)gt

m̂t =
mt

1− βt1

θt+1 = θt −
η√

v̂t + ε
m̂t

θt+1 = θt −
η√

v̂t + ε
(β1m̂t−1 +

(1− β1)gt
1− βt1

)

Look ahead like we did on the previous slide:

θt+1 = θt −
η√

v̂t + ε
(β1m̂t +

(1− β1)gt
1− βt1

)
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Visualization
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What to Use

For sparse data use an adaptive learning-rate method

RMSprop is an extension of Adagrad but fixes the diminishing
learning rate issue

Adadelta is like RMSprop uses RMS of parameter updates in in
numerator of update rule

Adam adds bias-correction and momentum to RMSProp, Adam
generally performs slightly better especially towards the end as
gradients become sparser

Vanilla SGD can be effective, but take a long time and is sensitive to
annealing and initialization

For faster convergence and for deep, complex neural networks use one
of the adaptive learning rate methods
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Parallelizing and Distributing SGD

Hogwild!

Processors are allowed to access shared memory without locking
parameters, works well with sparse data, allows SGD updates in parallel
on CPUs
Achieves almost optimal rate of convergence, as it is unlikely that
processors will overwrite useful info

DownpourSGD

Multiple replicas of model ran in parallel
Risk of divergence from each other since information isn’t shared
Each device solves subset

TensorFlow

Utilizes computation graph which uses Send/Receive node pairs
between devices

Elastic Averaging SGD

Central server for parameters, meant to keep local variables further
from center variable
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Additional Strategies

Shuffling and Curriculum Learn

Shuffle data in between epochs
For certain difficult problems, training examples can be presented in
meaningful order: Curriculum Learning

Batch Normalization

Normalize initial values of parameters by initializing them with zero
mean and unit variance, but we lose normalization as we train
Reestablish normalization for every mini-batch, can avoid the need of
dropout

Early Stopping

Should be done when validation error stops improving

Gradient Noise

Adding noise that follow Gaussian distribution N(0, σ2
t ) to each update

gt,i = gt,i + N(0,
η

(1 + t)γ
)

Sebastian Ruder ( Insight Centre for Data Analytics)An Overview of Gradient Descent Optimization Algorithms June 2017 37 / 38



Citations

https://en.wikipedia.org/wiki/Saddle_point

Sebastian Ruder ( Insight Centre for Data Analytics)An Overview of Gradient Descent Optimization Algorithms June 2017 38 / 38

https://en.wikipedia.org/wiki/Saddle_point

	Introduction
	Basics

	Gradient Descent Variants
	Basic Gradient Descent Algorithms
	Limitations

	Gradient Descent Optimization Algorithms
	Visualization
	What to Use
	Parallelizing and Distributing SGD
	Additional Strategies

