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Two problems faced in the machine learning application:

o Large data collection and annotation is expensive.
Can create large-scale synthetic dataset instead.

@ Enough synthetic data, but not perform well on realistic
domains.
Learn representations that are domaininvariant in scenarios where the
data distributions during training and testing are different.
The source data is labeled for a particular task. The task in this paper is
to transfer knowledge from the source to the target domain which has no
ground truth labels.
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Overview

o Different data distributions in the source and target domain:
low level: noise, resolution, illumination and color
high level: number of classes, type of objects, geometric variations.
In this paper, data from source and target domains have low level
distribution difference, while have similar high-level distributions and
the same label space.

o Method:
A private subspace for each domain: capture specific domain
properties.
A shared subspace: capture representations shared by domains.
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Related Work

@ Study of upper bounds on a domain-adapted classifier in the
target domain: Train a binary classifier to distinguish source and
target domains. Errors on each domains are used to decide the bound.

e Domain Adversarial Neural Networks (DANN):An architecture
with two classifiers trained simultaneously: the first is trained to
correctly predict task-specific class labels on the source data while the
second is trained to predict the domain of each input.

e Maximum Mean Discrepancy(MMD) metric: A metric to
calculate the domain classification loss.
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Overview

Explicitly model both private and shared components of the domain
representations.
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X° = {(x,-s,y,-s)},, labeled dataset from the source domain.
Xt = {x,.t},N:to: unlabeled dataset from the target domain
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k is the number of pixels in the input x. L mse is the scale-invariant MSE.
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HZ: each row is the hidden shared representation h? = E.(xs)
H;: each row is the hidden private representation hs = EJ(xs)
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DANN Similarity

The domain adversarial similarity loss is used to train a model to produce

representations such that a classifier cannot reliably predict the domain of
the encoded representation.

o Gradient Reversal Layer (GRL):

Q(f(u)) = f(u)

d d
—Q(f = ——f
2 Q(F(u) = —-(u)
@ Domain Classifier:

Z(Q(he); 0,) — d
@ Loss Function:
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MMD Similarity

The Maximum Mean Discrepancy (MMD) loss is a kernel-based distance
function between pairs of samples.

o MMD loss:
NS, Nt
MMD hs. kS s t
Lsimilarity NS a2 E : cn hq NSNt E k hcn hq
i,j=0 i,j=0
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@ Linear combination of multiple RBF kernels:

2
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Evaluation is based on training on a clean dataset and testing on noisy
dataset.
o Data for training;:
Source domain training: labeled training data from the source
domain.
Domain adaptation training: unlabeled data from the target
domain.
Hyperparameters: labeled data from the target domain(test set).
Test: test set from the target domain.
e 5 transfer scenarios:
(a). MNIST to MNIST-M: MNIST-M was created by using each
MNIST digit as a binary mask and inverting with it the colors of a
background image.
(b). Synthetic Digits to SVHM
(c). SVHN to MNIST
(d). Synthetic Signs to GTSRB
e). Synthetic Objects to LineMod: pose estimation.
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Accuracy

Model MNIST to | Synth Digits to | SVHN to | Synth Signs to
MNIST-M | SVHN MNIST GTSRB
[ Source-only [56.6(52.2) | 86.7(86.7) | 59.2(549) | 85.1 (19.0) |
CORAL [26] 57.7 85.2 63.1 86.9
MMD [29, 17] 76.9 88.0 71.1 91.1
DANN [8] 77.4 (76.6) | 90.3 (91.0) 70.7 (73.8) | 92.9 (88.6)
DSN w/ MMD (ours) | 80.5 88.5 72.2 92.6
DSN w/ DANN (ours) | 83.2 91.2 82.7 93.1
| Target-only [ 98.7 | 924 [ 99.5 [ 99.8 |

Mean classification accuracy and pose error for the “Synth Objects to LINEMOD” scenario.

\ Method | Classification Accuracy | Mean Angle Error |
| Source-only | 47.33% | 89.2° \
MMD 72.35% 70.62°
DANN 99.90% 56.58°
DSN w/ MMD (ours) 99.72% 66.49°
DSN w/ DANN (ours) 100.00% 53.27°

| Target-only | 100.00% | 6.47°
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Analysis of Reconstruction

(a) MNIST (source) (b) MNIST-M (target) (c) Synth Objects (source)  (d) LINEMOD (target)

Figure 2: Reconstructions for the representations of the two domains for “MNIST to MNIST-M”
and for “Synth Objects to LINEMOD”. In each block from left to right: the original image x;
reconstructed image D(E (x*) + E,(x")); shared only reconstruction D(E.(x")); private only
reconstruction D(E,(x")).
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Analysis of Loss Functions

Table 3: Effect of our difference and reconstruction losses on our best model. The first row is
replicated from Tab. 1. In the second row, we remove the soft orthogonality constraint. In the third
row, we replace the scale-invariant MSE with regular MSE.

Model MNIST to | Synth. Digits to | SVHN to | Synth. Signs to
MNIST-M | SVHN MNIST | GTSRB

All terms 83.23 91.22 82.78 93.01

No Laifterence | 80.26 89.21 80.54 91.89

Wwith £22 80.42 88.98 79.45 92.11
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