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Overview

They define an object termed a computation skeleton that describes a
distilled structure of feed-forward networks.

They show that the representation generated by random initialization
is sufficiently rich to approximately express the functions in H
all functions in H can be approximated by tuning the weights of the
last layer, which is a convex optimization task.
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Part I: Function Basis

In Rn space, we can use n independent vectors to represent any
vector by linear combination. The n independent vectors can be
viewed as a set of basis.

if x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn), we can get

< x , y >=
n∑

i=1

xiyi

Until now, this is the review of vector basis. These knowledge can be
extended to functions and function space.
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Function Basis

A function is an infinite vector.

For a function defined on the interval [a, b], we take samples by an
interval ∆x .
If we sample the function f (x) at points a, x1 · · · , xn, b, then we can
transform the function into a vector (f (a), f (x1), ·, f (xn), f (b))T .
When ∆x → 0, the vector should be more and more close to the
function and at last, it becomes infinite.
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Inner Product of Functions Similarly

Since functions are so close to vectors, we can also define the inner
product of functions similarly.

For two functions f and g sampling by interval ∆x , the inner product
could be defined as:

< f , g >= lim
∆x→0

∑
i

f (xi )g(xi )∆x =

∫
f (x)g(x)dx
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Inner Product of Functions Similarly

The expression of function inner product is seen everywhere. It has
various meanings in various context.

For example, if X is a continuous random variable with probability
density function f (x) , i.e., f (x) > 0 and

∫
f (x)dx = 1 , then the

expectation

E [g(x)] =

∫
f (x)g(x)dx =< f , g >
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Inner Product of Functions Similarly

Similar to vector basis, we can use a set of functions to represent
other functions.

The difference is that in a vector space, we only need finite vectors to
construct a complete basis set, but in function space, we may need
infinite basis functions.

Two functions can be regarded as orthogonal if their inner product is
zero.

In function space, we can also have a set of function basis that are
mutually orthogonal.
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Inner Product of Functions Similarly

Kernel methods have been widely used in a variety of data analysis
techniques.

The motivation of kernel method arises in mapping a vector in Rn

space as another vector in a feature space.
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Eigen Decomposition

For a real symmetric matrix A , there exists real number λ and vector
q so that

Aq = λq

For A ∈ Rn×n, we can find n eigenvalues (λi ) along with n orthogonal
eigenvectors (qi ). As a result, A can be decomposited as

Here {qi}ni=1 is a set of orthogonal basis of Rn.
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Eigen Decomposition

A matrix is a description of the transformation in a linear space.

The transformation direction is eigenvector.

The transformation scale is eigenvalue.
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Kernel Function

A function f (x) can be viewed as an infinite vector, then for a
function with two independent variables K (x , y), we can view it as an
infinite matrix.

If K (x , y) = K (y , x) and∫ ∫
f (x)K (x , y)f (y)dxdy ≤ 0

for any function f , then K (x , y) is symmetric and positive definite,
then K (x , y) is a kernel function.

Similar to matrix eigenvalue and eigenvector, there exists eigenvalue λ
and eigenfunction ψ(x), so that∫

K (x , y)ψ(x)dx = λψ(y)
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Kernel Function

K (x , y) =
∞∑
i=0

λiψi (x)ψi (y) (1)

Here, < ψi , ψj >= 0fori 6= j

Therefore, {ψi}∞i=1 construct a set of orthogonal basis for a function
space.
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Reproducing Kernel Hilbert Space

{
√
λiψi}∞i=1 is a set of orthogonal basis and construct a Hilbert space

H
Any function or vector in the space can be represented as the linear
combination of the basis. Suppose

f =
∞∑
i=1

fi
√
λiψi

we can denote f as an infinite vector in H:

f = (f1, f2, · · · )TH
for another function

g = (g1, g2, · · · )TH
we have

< f , g >H=
∞∑
i=1

figi
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Reproducing Kernel Hilbert Space

We use K (x , y) to denote the number of K at point x , y , use K (·, ·)
to denote the function itself, and use K (x , ·) to denote the x-th
”row” of the matrix.

K (x , ·) =
∞∑
i=0

λiψi (x)ψi

In space H, we can denote

K (x , ·) = (
√
λ1ψ1(x),

√
λ2ψ2(x), · · · )TH

Therefore,

< K (x , ·,K (y , ·)) >H=
∞∑
i=0

λiψi (x)ψi (y) = K (x , y)

This is the reproducing property, thus H is called reproducing kernel
Hilbert space (RKHS).
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Go Back: How to Map a Point into A Feature Space

we define a mapping:

Φ(x) = K (x , ·) = (
√
λ1ψ1(x),

√
λ2ψ2(x), · · · )TH

then we can map the point x to H.

< Φ(x),Φ(y) >H=< K (x , ·),K (y , ·) >H= K (x , y)

As a result, we do not need to actually know what is the mapping,
where is the feature space, or what is the basis of the feature space.

Kernel trick: for a symmetric positive-definite function K , there must
exist at least one mapping Φ and one feature space H, so that

< Φ(x),Φ(y) >H= K (x , y)
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Duality

In mathematical optimization theory, duality means that optimization
problems may be viewed from either of two perspectives, the primal
problem or the dual problem (the duality principle). The solution to
the dual problem provides a lower bound to the solution of the primal
(minimization) problem.

If you have a minimization problem, you can also see it as a
maximization problem. And when you find the maximum of this
problem, it will be a lower bound to the solution of the minimization
problem
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Duality

We want to minimize the function at the top of the graph. Its minimum is
P, D is the maximum for its dual problem.

P − D is duality gap. if
P − D > 0, we say weak duality
holds.

P − D = 0, there is no duality
gap, and we say that strong
duality holds.
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Notation

G = (V, E) is a directed acyclic graph

The set of neighbors incoming to a vertex v is denoted
in(v) := u ∈ V |uv ∈ E

The d - 1 dimensional sphere is denoted Sd−1 = {x ∈ Rd |‖x‖ = 1}
The ball of radius B in Hilbert space H: {x ∈ Hd |‖x‖H ≤ B}
input: x = (x1, · · · , xn),wherex i ∈ Sd−1

A network N with a weight kernel vector w = {Wuv |uv ∈ E} defines
a predictor hN ,w : X → Rk

For an input node v , its output is hv ,w(x) = θv (
∑

u∈in(v) wuvhu,w(X ))

The representation induced by the weight w is RN ,w = hrep(N ),w
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Computation Skeleton

Definition 1

Definition 1. A computation skeleton S is directed acyclic graph (DAG)
whose non-input nodes are labeled by activations.
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Fully connected layer of a skeleton

Terminology

An induced subgraph of a skeleton with r + 1 nodes, u1, · · · , ur , v is called
a fully connected layer if ite edges are u1v , · · · urv
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Convolution layer of a skeleton
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Realization of a skeleton
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Realization of a skeleton

The (5, 4)-realization is a network with a single (one dimensional)
convolutional layer having 5 channels, stride of 2, and width of 4,
followed by three fully-connected layers.
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Random Weights
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Dual activation kernel

A computation skeleton S also defines a normalized kernel
kS : X × X → [−1, 1] and a corresponding norm ‖ · ‖S on functions
f : S → R
This norm has the property that ‖f ‖S is small iff f can be obtained
by certain simple compositions of functions according to the structure
of S.

To define the kernel, we introduce a dual activation and dual kernel.

For ρ ∈ [1, 1], we denote by Nρ the multivariate Gaussian distribution

on R2 with mean 0 and covariance matrix

(
1 ρ
ρ 1

)
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Dual activation kernel
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Dual activation kernel
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Dual activation kernel
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Dual activation kernel
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Dual activation kernel
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