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Definition

@ Small perturbations almost imperceptible by humans but lead to
incorrect classifications

@ Want network to be more robust against adversarial examples

@ Propose a binary detection network that detects adversarial examples
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Past Solutions

@ Augmenting the training input (Goodfellow et al., 2015)
@ Append a stability term to the objective function (Zheng et al. 2016)

@ Distilling a hardened network from the original classifier network
(Papernot et al., 2016b)
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Why Exist Theories

@ High non-linearity of deep networks cause the existence of pockets of
low-probability adversarial examples (Szegedy et al. 2014)

@ Linear explanation: for some input x and adversarial noise 7, the
adversarial example x?@ = x + i multiplied by the weight vector w
makes w'x?® = w'x + xTn. Many small changes in 7 causes
neuron changes. (Goodfellow et al., 2015)

e Class boundary lies close to a data manifold. (Tanay & Griffin 2016)
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@ x input

@ Virue(Xx) one-hot encoding of true class of image x

@ Jus(x,y(x)) the cost function of the classifier
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Fast Method

X — « + esgn(Vch/s(X’yfrue(X)))

@ Applied perturbation is in the direction of the in image space which
yields the highest increase of the linearized cost function under
Isxo-norm

@ One step in the direction of the gradient's sign with step €

Goodfellow et al. (2015)
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Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet
let all [2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our e of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.
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Basic lterative Method /,

@ /y-norm
xgd" = X, xﬁi"l Clipx, 6{x + asgn(VyJdas(x; ,ym,e(x)))

° CIipX,e{X,}(Xa Y, Z)
= min{255, X(x, y, z) + ¢, max{0, X(x, y, z) — €, X'(x, y, 2) } }
X source image, x, y coordinates, z channel

@ Step size a=1, iterations = 10

Kurakin et al. (2016)
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Basic Iterative Method £

@ Move toward the gradient but inside the € neighborhood

e if the / distance exceeds ¢, project back on the ¢ ball

VXJC/S(X,E,’dV, Yierue(X))
IV deis (X34, Yerue (X)) |2

X = x,x2% = Project, {x2% + a

}
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Basic lterative Method

(a) Image from dataset (b) Clean image (c) Adv. image, ¢ = ¢ Adv. image, ¢ = 8

Figure 1: Demonstration of a black box attack (in which the attack is constructed without access to
the model) on a phone app for image classification using physical adve al examples. We took
a clean image from the dataset (a) and used it to generate adversarial images with various sizes of
adversarial perrurbatlon €. Then we prmted Lle-m ‘md Hdwersanal images and used the TensorFlow

Jan Hendrlk Metzen T|m Genewem Volker F On Detectlng Adversarlal Perturbatlons ICLR 2017 14 / 88



Outline

9 Methods

@ DeepFool Method

Jan Hendrik Metzen, Tim Genewein, Volker F On Detecting Adversarial Perturbations ICLR 2017 15 / 33



DeepFool

@ lteratively step to cross class boundary.
o min.||r||2 sit. Yirue(X + 1) # Yirue(X)

@ Used b and I, norms

Moosavi-Dezfooli et al. (2016b)
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Basic lterative Method

Figure 1: An example of adversarial perturbations com-
puted by DeepFool and the fast gradient sign method [4]].
First row: the original image = which is classified as
“whale” (k(x)). Second row: the image classified as “tur-
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@ Subnetwork at some intermediate layer assigns probability if input is
adversarial.

@ Train by first training classification network, make adversarial
examples, freeze classification network weights, then training
subnetwork

@ Adversarial data get 1, good get 0
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adv. detector opt. opt. 1x1

Figure 1: (Top) ResNet used for classification. Numbers on top of arrows denote the number of
feature maps and numbers below arrows denote spatial resolutions. Conv denotes a convolutional
layer, Res*? denotes a sequence of 5 residual blocks as introduced by, GAP denotes
a global-average pooling layer and Dens a fully-connected layer. Spatial resolutions are decreased
by strided convolution and the number of feature maps on the residual’s shortcut is increased by
1x1 convolutions. All convolutional layers have 3x3 receptive fields and are followed by batch
normalization and rectified linear units. (Bottom) Topology of detector network, which is attached to
one of the AD(i) positions. MP denotes max-pooling and is optional: for AD(3), the second pooling
layer is skipped, and for AD(4), both pooling layers are skipped.
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Dynamic Adversary

@ Fool both the classifier and the detector.
e Foro e [0, 1]

adv _
ﬁ—cil-vl = C/le 3% + a[(1 = 0)sgn(Vidaas (X3, yirue(X))) +
o sgn(Jaet (2, 1))}

@ Trade off between costs
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Dynamic Adversary Training

@ Compute adversarial on the fly with changing o
@ Adversary modify each data point with probability 0.5

@ Train detector to resist for various values of o
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CIFAR10

@ Use 32-layer Residual Network
o CIFAR10 data
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Static Adversaries
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Figure 2: (Left) Ilustration of detectability of different adversaries and values for € on CIFAR10.
The x-axis shows the predictive accuracy of the CIFAR10 classifier on adversarial examples of the
test data for different adversaries. The y-axis shows the corresponding detectability of the adversarial
examples, with 0.5 corresponding to chance level. “No” corresponds to an “adversary” that leaves the
input unchanged. (Right) Analysis of the detectability of adversarial examples of different adversaries
for different attachment depths of the detector.
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Static Adversaries
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Figure 3: Transferability on CIFAR10 of detector trained for adversary with maximal distortion e ;;
when tested on the same adversary with distortion €. Different plots show different adversaries.
Numbers correspond to the accuracy of detector on unseen test data.
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Static Adversaries
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Figure 4: Transferability on CIFARI10 of detector trained for one adversary when tested on other
adversaries. The maximal distortion € of the adversary (when applicable) has been chosen minimally
such that the predictive accuracy of the classifier is below 30%. Numbers correspond to the accuracy
of the detector on unseen test data.
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Dynamic Adversaries
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Figure 5: Illustration of detectability versus classification accuracy of a dynamic adversary for
different values of ¢ against a static and dynamic detector. The parameter ¢ has been chosen as
o € {0.0,0.1,...,1.0}, with smaller values of o corresponding to lower predictive accuracy, i.e.,
being further on the left.
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10-Class ImageNet
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Figure 6: Illustration of detectability of different adversaries and values for £ on 10-class ImageNet.
The x-axis shows the predictive accuracy of the ImageNet classifier on adversarial examples of the
test data for different adversaries. The y-axis shows the corresponding detectability of the adversarial
examples, with 0.5 corresponding to chance level.
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10-Class ImageNet

Fast Iterative (¢y) Iterative (¢,.)

0.50 0.91 Sl 0.88 -
- EIEE
2 4 6 1200 2 4 6
€ fit Efu € fit

~ QUEEN 0.58 0.51

Etest
4

€test
1200 800 400
Etest

Figure 7: Transferability on 10-class ImageNet of detector trained for adversary with maximal
distortion € 7;; when tested on the same adversary with distortion €. Different plots show different
adversaries. Numbers correspond to the accuracy of the detector on unseen test data.
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10-Class ImageNet
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Figure 8: Transferability on 10-class ImageNet of detector trained for one adversary when tested on
other adversaries. The maximal distortion of the /..-based Iterative adversary has been chosen as
£ = 2 and as £ = 800 for the ¢>-based adversary. Numbers correspond to the accuracy of detector on
unseen test data.
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@ Pretty high rate of identifying adversarial input
@ Image-based perturbations are sufficiently regular to be detectable
@ Dynamic detector much harder to fool

o Reduce the area adversarial to both the classifier and detector
e Area might become more irregular and harder to find with gradient
descent

@ Further work: Use the gradient as a source of regularization

Jan Hendrik Metzen, Tim Genewein, Volker F On Detecting Adversarial Perturbations ICLR 2017 33 /33



	Introduction
	Adversarial Examples

	Methods
	Fast Method
	Basic Iterative Method
	DeepFool Method
	Adversary Detection Network
	Dynamic Adversaries and Detectors

	Conclusion
	Experiments


