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Introduction to Robust Estimation

@ Given that samples come from a nice distribution, but adversary has
corrupted a constant fraction of samples, goal is to robustly estimate
the statistics - mean and covariance

@ In one-dimension, robust alternatives to mean and covariance exist -
median and interquantile range

@ In high dimensions, there is a trade-off between robustness and
computational efficiency

o Tukey median - hard to compute; heuristics based computation does
not scale with dimensions

e Minimum volume ellipsoid - hard to compute; heuristics based
computation scale poorly with dimensions
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Related Work

e Robust mean and covariance estimation - [DKK'16] gave an
algorithm for agnostically learning the parameters of a Gaussian
N (p, X) that satisfy dry (N, N’) < O(€) where € samples are
corrupted, and the computational complexity of the algorithm is
polynomial in dimensionality d and 1/e. [LRV16] proposed unknown
mean estimation where d7y (N, N’) < O(ey/log d).

@ Robust PCA - [CLMW11] proposed robust PCA with semidefinite
programming which can tolerate a constant fraction of corruptions.
[XCS10] used semidefinite programming for robust PCA with outliers.
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Contributions

@ Modification to the algorithm of [DKK™16] with the definition of
good sets to estimate the mean with O(d/e?) samples and covariance
with O(d?/€?) samples.

@ Improvement to the number of corruptions that can be tolerated by
empirically tuning the threshold for filtering of corrupt points.

© Same bounds are shown to be valid even for weaker distributional
assumptions of the underlying data.

@ Comparison of models via visual representation of genetic data that
encodes the map of Europe.
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Formal Framework

Notation: For a vector v, ||v||2 is the Euclidean norm, and for a matrix
M, ||[M]|2 is the spectral norm and |[M||f is the Frobenius norm. X €, S
means sample X is drawn from the empirical distribution defined by S.

Definition (e-corruption)

Given € > 0 and a distribution family D, the algorithm spcifies the number
of samples m and the adversary generates m samples X1, X», ..., X, from
some D € D. It then draws m’ ~ Bin(e, m) from an appropriate
distribution and replaces m’ of the input samples with arbitrary points.
The altered samples are given to the algorithm.

Goal of the algorithm is to return the parameters of D that are close to
true distribution D. For mean, Euclidean distance is used and for
covariance, Mahalanobis distance is used || Z~/25¥"1/2 — J||¢.
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Nearly Sample-Optimal Efficient Robust Learning

The overall filtering procedure for robust estimation is the following
iterative procedure:

© find some univariate test (via spectral methods) that is violated by
the corrupted points

@ find some concrete tail bound violated by the corrupted set of points

© thrown away all the points which violate this tail bound
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Robust Mean Estimation of Sub-Gaussian

Theorem (1)

Let G be a sub-gaussian distribution on RY with parameter v = ©(1),
mean [LG, covariance matrix |, and e > 0. Let S be an e-corrupted set of
samples from G of size Q((d/€?)polylog(d/e)). There exists an efficient
algorithm that, on input S and € > 0, returns a mean vector [i so that
with probability at least 9/10 we have ||fi — u®||2 = O(e+/log 1/€).
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Robust Mean Estimation under Bounded Second Moment

Let P be a distribution on RY with unknown mean vector i and unknown
covariance matrix ¥p < 0°l. Let S be an e-corrputed set of samples from
P of size ©((d/e) log d). There exists an efficient algorithm that, on input
S and e > 0, with probability 9/10 outputs ||fi — uF|l2 = O(v/e0).

The main difference between this theorem and the previous one is the
choice of filtering threshold. Instead of looking for a violation of a
concentration inequality, here threshold is chosen at random.

Caution: This method may throw away even some uncorrupted points but
it only rejects O(€) samples with high probability.
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Robust Covariance Estimation of Gaussian

Theorem (3)

Let G ~ N(0,X) be a Gaussian in d dimensions, and let ¢ > 0. Let S be
an e-corrupted set of samples from G of size Q((d?/€?)polylog(d/e)).
There exists an efficient algorithm that, given S and ¢, returns the
parameters of a Gaussian distribution G' ~ N(0,X) so that with
probability at least 9/10, it holds ||| — £~Y/25¥~1/2||r = O(elog(1/€)).
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Robust Mean Estimation

Algorithms which achieve Theorems 1 and 2 have common template, with
three parameters:

@ Thresh(e) - threshold function to terminate if covariance has spectral
norm bounded by Thresh(e).

e Tail(T,d, e, d,7) - univariate tail bound violated by only 7 fraction of
uncorrupted points, but more of corrupted points.

@ J(e,s) - slack function (required for technical reasons).
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Robust Mean Estimation Algorithm Template

Algorithm 1 Filter-based algorithm template for robust mean estimation

: Input: An e-corrupted set of samples S, Thres(g), Tail(T, d, &, 8,7), (e, 8)

: Compute the sample mean p° = Exe, sr[X]

: Compute the sample covariance matrix ¥

: Compute approximations for the largest absolute eigenvalue of ¥, A\* := | X||;, and the associated unit
eigenvector v*.

: if ||E|j2 < Thres(g) then

return p° "

: Let 6 = d(e, || Z]|2)-

: Find T > 0 such that

oW N e

[ -

P Pr_ [l (X — %) > T+ 6] > Tail(T,d, ,8,7).

9: return {z € &' : |v* - (z — p5)| < T + 6}
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Algorithm for Sub-Gaussian (Theorem 1)

Algorithm 2 Filter algorithm for a sub-gaussian with unknown mean and identity covariance
1: procedure FILTER-SUB-GAUSSIAN-UNKNOWN-MEAN(S’, €, 7)

input: A multiset S’ such that there exists an (g,7)-good S with A(S,8") < 2¢

output: Multiset S” or mean vector ,u sat:sfymg Proposition A.7

2 Compute the sample mean p5 = EXC s [X] and the sample covariance matrix ¥ , ie, & =
(Zij)1<ijed with B = Exe, o[(X: — ."-"m )(X U‘J )]
3: Compute approximations for the largest absolute eigenvalue of ¥ — I, A* := ||[E — I||s, and the

associated unit eigenvector v*. .
4 if |2~ I||2 < O(zlog(1/e)), then return p¥
Let & := 3,/¢||X — I||2. Find T > 0 such that

a

£

[10°+ (X = 45| > T+ 6] > Bexp(~T2/20) + 7 log (d1og( 1)

Xc S'

6 return the multiset §” = {r € 8§ : [v* - (z — p¥')| < T +5}.
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Algorithm with Bounded Second Moment (Theorem

Algorithm 3 Filter under second moment assumptions
function FILTERUNDER2NDMOMENT(S)

1:

2 Compute p°, £°, the mean and covariance matrix of S.

3 Find the eigenvector v* with highest eigenvalue A* of £,

4 if A* <9 then

5 return p.s

6 else

7 Draw Z from the distribution on [0, 1] with probability density function 2z.
8 Let T = Zmax{|v* -z — u%| : z € S}.

g Return the set S’ ={z € §: [v* - (X — u®)| < T}

llias Diakonikolas, Gautam Kamath, Daniel MBeing Robust (in High Dimensions) Can Be F



Robust Covariance Estimation (Theorem 3)

Algorithmn 4 Filter algorithm for a Gaussian with unknown covariance matrix.
1: procedure FILTER-GAUSSIAN-UNKNOWN-COVARIANCE(S', €, T)
input: A multiset 5’ such that there exists an (¢, 7)-good set § with A(S,8') < 2e
output: Either a set 8 with A(S,S") < A(S,8’) or the parameters of a Gaussian G’ with drv(G,G’) =
O(elog(1/€)).
Let C > 0 be a sufficiently large universal constant.
Let ' be the matrix Exe, s/[XX”] and let G' be the mean 0 Gaussian with covariance matrix X',
if there is any = € 5’ so that 2”7 (X) 'z > Cdlog(|$’|/7) then
return §" = §' — {z : " (X') 'z > Cdlog(|S'|/7)}.
Compute an approximate eigendecomposition of £’ and use it to compute &'~ /2
Let z(1),...,%( s/ be the elements of 5.
Fori=1,...,[8] let yi) = X'~ /%) and 2 =y,
Let Ts = 11" + (1/|8') 5] 22
9: Approximate the top eigenvalue A* and corresponding unit eigenvector v* of Tg..
100 Let pr(z) = Jp((2120) v (5 ) — (™))
1 if A* < (1 + Celog®(1/2))Qe (p*) then
12: return G’
18: Let x be the median value of p™(X) over X € §'.
14: Find a T > " so that

Eol =

ST ew

o

chnrsuup*(x) —p| =T +4/3) > Tail(T, d,e,7)

15 return 8" ={X € §": |p"(X) — pu| < T}
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Experimental Settings

Experiments were performed over:

@ Synthetic dataset unknown mean - ¢ = 0.1,
d = [100,150,...,400], n = 10d/e? samples are generated where
(1 — €) fraction come from N (u, )

@ Synthetic dataset unknown covariance - ¢ = 0.1,
d = [10,20,...,100], n = 0.5d /> samples are generated where
(1 — ¢) fraction come from A/ (0, X)

@ Semi-synthetic dataset - Genotype of thousands of individuals.
PCA is used to project into two dimensions, which have a striking
resemblance to the map of Europe.
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Synthetic Data - Mean Estimation
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Synthetic Data - Covariance Estimation
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Semi-Synthetic Data
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Semi-Synthetic Data

Original Data Filter Projection
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Conclusion

Robust estimation of mean and covariance in high-dimensional data

Experiments over synthetic data comparing the statistical accuracy of
proposed method over existing approaches

Experiments over Genotype dataset to visually represent the
performance of various approaches in recovering the map of Europe

Theoretical proof of correctness of the proposed approach
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