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Motivation

o Interpretabilty of neural networks :Assign importance score to
inputs for a given output.
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Motivation

Interpretabilty of neural networks :Assign importance score to
inputs for a given output.

Importance is defined in terms of differences from a ‘reference’ state.

Propagates importance signal even when gradient is zero.

Gives separate consideration to positive and negative contributions.
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State-of-the-art

o Perturbation-based forward propagation approaches: Zeiler and
Fergus (2013), Zhou and Troyanskaya (2015).

() Layer 5, strongest {d) Classifier, probability () Classifier, most
(a) Inputimage (b) Layer 5, strongest feature map __feature map projections of correct class robable class

True Label: Porer

o Backpropagation-based approaches: Saliency maps: Simonyan et
al. (2013), Guided Backpropagation: Springenberg et al. (2014)
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Saturation problem

y +i2)when(i]+i2) <1

(i
1 when (i1 + iz) >=1
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Saturation problem

y=(i,+i)when(i +i) <1
=1 when (i1+ i;) >=1

When (i, +i,)>=1,
gradient is 0
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Thresholding Problem

y = max(0, x — 10)
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e Proposed Approach
@ DeepLIFT Method
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Philosophy

@ Explains difference in output from some ‘reference’ output in terms of
difference on input from some ‘reference’ input.
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@ Summation-to-delta property:
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Philosophy

Explains difference in output from some ‘reference’ output in terms of
difference on input from some ‘reference’ input.

Summation-to-delta property:

YiliCaxar = At (1)

Blame At on Axy, Axp, ...

Cax,at can be non-zero even when % is zero.
1
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e Proposed Approach

@ Defining Reference
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Defining Reference

@ Given neuron x with inputs i1, iz, ... such that x = f(i1, 2, ...)
o Given reference activations i), 9, ... of the input:
0 0 -0
X :f(ll?’27"') (2)
@ Choose reference input and propagate activations though the net.
@ Good reference will rely on domain knowledge: “What am | interested

in measuring difference against?”
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e Proposed Approach

@ Solution
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Saturation Problem

y=(i +i,)when(i +i) <1
=1 when (i1+i2) »=1

Reference: i =0&i =0 w

h=1when (i, +1i,) =0 (reference)

At(i, +i)) =2,
the “difference
from reference”
is-1, NOTO
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Thresholding Problem

y = max(0, x— 10)
“difference from
reference” (if ref. = 0)
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e Proposed Approach

@ Multipliers and Chain Rule
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Multipliers

CAXAI‘ (3)

maxAt = At

o Multiplier is the contribution of Ax to At divided by Ax

@ Compare: partial derivative = %

@ Infinitesimal contribution of dx to dt, divided by dx
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Chain Rule

MAx;Az = LjMAx;Ay; MAy;Az (4)

@ Can be computed efficiently via backpropagation
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e Proposed Approach

@ Separating positive and negative contribution
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Separating positive and negative contribution

@ In some cases, important to treat positive and negative contributions
differently.

@ Introduce Ax,-+ and Ax;, such that:

Axi = Axi" + Ax;; Caxiae = Cacrae + Caxo e
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e Proposed Approach

@ Rules for assigning contributions
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Linear Rule

* For y=b+ >, wiz; , we have Ay = w;Az;

e Define: ay = 3 HwAz; > OwiAx; Ay~ =" Hwilz; < 0}w, Az,
=" HwiAz; > O}wi(Az + Azy) =3 Hwidz < O}wi(Az] + Az

CA:C'."Ay‘*‘ = l{w,;Azz,- > O}TUZALBj CAx:Ay* = 1{11)1'A1};' < O}MZAI:

Cazray- = Hw;Az; > 0}w; Az, Chs-ay- = Hw;Az; < 0}w;Az;

Mpgtayt = Mag: Ayt = Hw;Az; > 0}w;

Mpgtay- = Mag-ay- = Hwidz; < 0}w;

* When Ax = 0 (but Ax* and Ax are not
necessarily zero): m,, o ¢« = ma,-n,- = 0.5w;
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Rescale Rule

y = f(=z)
* Set Ay* and Ay proportional to Ax* and Ax”
A
Ayt = ﬁAﬁ = Casrays

A
Ay :fiAx = Caz—ay-

Ay

MAs+ Ayt = MAs-Ay~ = MAzay = 7o
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Gradient*Ainput assigns: i, :2, i,:4, bias: -3
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Where it works

Mmahay =2

h: =max(0, i: -1.5)

Al 1
MAi ARy = A_’.' - j
ref=0
rf\i1 =1 Ai2=2
MAQ, Ay = MAH AL MAR Ay = 2 MAi, Ay = MALALMARAy = 0.5
Caiyay = maiagdiy =2 Cainay = Maiaydi, = 1
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Where it fails: “min" (AND) relation

1 <y iy = (i) =1,
i > i,=0=i,
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re it fails: “min” (AND) relation

o ei{Z Ay =1=(2from Ai) + (-1 from Ah,)
- =(2from 4i,) + (-1 from bh,)
=(2from Ai,) + (-1*((2 from 4i,) + (-1 from Ai,)])

= (0 from 4i,) + (1 from 4i,)
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RevealCancel Rule

Ay = % (fiz"+Az*) - f(z")) (impact of Ax* after no terms added)
+ % (F(2® + Az~ + Azh) - £(z" + Az7)) (impact of Ax' after negative terms added)
Ay = % (Fa"+Az7) = f(z") (impact of Ax after no terms added)
+ % (£(z"+ Az + Az7) - f(z° + Az™)) (impact of Ax after positive terms added)
Cpg=y+ Ay~ Ay~
Maz+ay+ = glf = A_:‘- sMag-ay- = A_i_

Avanti Shrikumar, Peyton Greenside, Anshul ILearning Important Features Through Propag



Solution: “min” (AND) relation

_ Ai‘:Z " Aizzl
@=2 Ay=1=(2from Ai) + (-1 from &h,) @=

= (2 from Ail) + (-1*[(1.5from Ahz’] +(-0.5 from Ahz')])
=(2from Ai) + (-1*[(1.5 from Ah ") + (-0.5 from 4h )])
=(2from 4i,) + (-1*[(1.5 from Ai ) + (-0.5 from Ai,)])
=(0.5from Ai,) + (0.5 from Ai )
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e Results

@ MNIST digit classification
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MNIST digit classification
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e Results

@ DNA sequence classification
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DNA sequence classification

(a) ® Only TAL motifs were embedded in the full region ® Both kinds of motifs were embedded in the full region
® Only GATA motifs were embedded in the full region ®No motifs were embedded in the full region
gradient* integrated integrated DeepLIFT- DeepLIFT- DeepLIFT-

Guided
Backprop*inp input .o gradients-5  gradients-10 Rescale RevealCancel fc-RC-conv-RS

Scores for Task 0

Scores for Task 1
(“contains GATA®) (*Both TAL & GATA")

Lo

Scores for Task 2
(*contains TAL")

034680121416 02468 0246810171416 02 4 6 810131416 O 2 4 & #i0LFI4I6
TAL log odds score

0246810171416 02468 .
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DNA sequence classification

@3 s ATAA,,,Q knowni .QQCA AT oL

< (b) Scores for Task O (both GATA and TAL)
LA, (false-positive firing) ]
f“ integrated ]
SEN—— - gradients (10) - -
= e~ e e —
, "““'Tfrd"lv" (all layers) . e el

L’ RevealCancel
el WG (allSaYRS) e e eyl e o

: . T RevealCancel-fc,
L LJLLL..C fl ¥ Rescale-conv
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Novel approach for computing importance scores based on differences
from the ‘reference’.

Using difference-from-reference allows information to propagate even
when the gradient is zero

Separates contributions from positive and negative terms

Video at : https://wuw.youtube.com/watch?v=v8cxYjNZAXc&
index=1&1ist=PLJLjQ0kqSRTP3cLB2c00i_bQFw6KPGKML

Slides at: https://drive.google.com/file/d/0B15F_
QN41VQXbkVkcTVQYTVQNVE/view

Future Direction

o Applying DeepLIFT to RNNs
e Compute ‘reference’ empirically from data
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