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Introduction

@ Optical Character Recognition for mathematical expressions
@ Challenge: creating markup from compiled image

@ Have to pick up markup that translates to how characters are
presented, not just what characters

@ Goal is to make a model that does not require domain knowledge, use
data-driven approach

@ Work is based on previous attention-based encoder-decoder model
used in machine translation and in image captioning

o Added multi-row recurrent model before attention layer, which proved
to increase performance
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Problem Statement

@ Converting rendered source image to markup that can render the
image

@ The source, x € X is a grayscale image of height, H, and width, W
(RHXW)

@ The target, y € ) consists of a sequence of tokens y1, y», ..., ¥c

e C is the length of the output, and each y is a token from the markup
language with vocabulary >

o Effectively trying to learn how to invert the compile function of the
markup using supervised examples

e Goal is for compile(y) ~ x

@ Generate hypothesis y, and X is the predicted compiled image

e Evaluation is done between X and x, as in evaluating to render an
image similar to the original input
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@ Convolutional Neural Network (CNN) extracts image features
e Each row is encoded using a Recurrent Neural Network (RNN)

@ When paper mentions RNN, it means a Long-Short Term Memory
Network (LSTM)

@ These encoded features are used by an RNN decoder with a visual
attention layer, which implements a conditional language model over

2
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Convolutional Network

@ Visual features of the image are extracted with a multi-layer
convolutional neural network, with interleaved max-pooling layers

o Based on model used for OCR by Shi et al.

@ Unlike some other OCR models, there is no fully-connected layer at
the end of the convolutional layers

o Want to preserve spatial relationship of extracted features
@ CNN takes in input RP*W  and produces feature grid, V of size
CxH'xW' where ¢ denotes the number of channels, and H" and W’
are the reduced dimensions from pooling
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@ Unlike with image captioning, OCR there is significant sequential
information (i.e. reading left-to-right)

Encode each row separately with an RNN

o Most markup languages default left-to-right, which an RNN will
naturally pick up

e Encoding each row will allow the RNN to use surrounding horizontal
information to improve the hidden representation

Generic RNN: hy = RNN(h¢—1, v¢; 0)

@ RNN takes in V and outputs V:

o Run RNN over all rows h € {1,....; H'} and columns w € {1,...., W'}
o V=RNN\Vhw_1,Vhw)
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@ Decoder is trained as conditional language model

@ Modeling probability of output token conditional on previous ones:
p(yt+1|y17 ceeey Yt V= Softmax(WOUfot)

@ Wo! js a learned linear transformation and o; = tanh(W¢[hy; ¢;])
® hy = RNN(h¢_1, [yr—1;0¢-1])
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Attention

General form of context vector used to assist decoder at time-step t:

Ct = Qf)({\?h,w}, at)

General form of e and the weight vector, a:

e = a(hta {Vh,w})
ot = softmax(e;)

@ From empirical success choose a: e; = ﬂTtanh( Wph;—1 + W, ¥;) and
C = Z,’aitvt
@ c; and h; are simply concatenated and used to predict the token, y;
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Row Encoder

Convolutional Network

W
X < SN
Figure 2: Network structure of WYGIWYS. Given an input
image, a CNN is applied to extract visual features, then for
each row in the final feature map we employ an RNN en-
coder. The encoded features are then used by an RNN de-
coder with a visual attention mechanism to produce final
outputs. For clarity we only show the RNN encoding at the
first row and the decoding at time step ¢.
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Example

Q@ = ( b 4+ 1 1 b ) \vho , \quadvho = Wac { 1 } { 2 } l\um { apha> 0 } \apha,

b+1/b)p, p= Za
a>0

Figure 1: Example of the model generating mathematical markup. The model generates one LaTeX symbol y at a time based on the input
image x. The gray lines highlight H" x V' grid features after the CNN V and RNN Encoder V. The dotted lines indicate the center of
mass of a for each word (only non-structural words are shown). Red cells indicate the relative attention for the last token. See http:
//1lstm.seas.harvard.edu/latex/ fora complete interactive version of this visualization over the test set.
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Model Architecture

Conv Pool

c:512, k:(3,3), s:(1,1), p:(0,0), bn -
c:512, k:(3,3), s:(1,1), p:(1,1), bn  po:(1,2), s:(1,2), p:(0,0)

c:256, k:(3,3), s:(1,1), p:(1,1) po:(2,1), s:(2,1), p(0,0)
c:256, k:(3,3), s:(1,1), p:(1,1), bn -

c:128, k:(3,3), s:(1,1), p:(1,1) po:(2,2), s:(2,2), p:(0,0)
c:64, k:(3,3), s:(1,1), p:(1,1) po:(2,2), s:(2,2), p(2,2)

Table 2: CNN specification. ‘Conv‘: convolution layer, ‘Pool:
max-pooling layer. ‘c’: number of filters, ‘k’: kernel size, ‘s’: stride
size, ‘p’: padding size, ‘po’:, ‘bn’: with batch normalization. The
sizes are in order (height, width).
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Experiment Details

@ Beam search used for testing since decoder models conditional
language probability of the generated tokens

@ Primary experiment was with IM2LATEX-100k, which is a dataset of
mathematical expressions written in latex

@ Latex vocabulary was tokenized to relatively specific tokens, modifier
characters such as " or symbols such as \sigma

Transform Original Normalized
SubSup H TI_1 H I"1
ReqgBrack H I H {I}

Desugar H’ H" {\prime}
ExpOperators \sin \operatorname{sin}
InfixPrefix \over \frac{}{}
MatrixEnv \matrix \begin{array}...
Drop \label({} —

Table 1: Preprocessing transformations applied to LaTeX abstract
syntax tree in normalizing mode. These transformations are mostly
safe, although there are some corner cases where they lead to small
differences in output.
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Experiment Details

@ Created duplicate model without encoder as control to test against
image captioning models, the control was called CNNEnc

@ Evaluation by comparing input image and rendered image of output
latex

@ Initial learning rate of .1 and halve it once validation perplexity
doesn’t decrease

o Low validation perplexity means good generalization when comparing
training to validation set

@ 12 epochs and beam search using beam size of 5

Yuntian Deng, Anssi Kanervisto, Alexander Mimage-to-Markup Generation with Coarse-to-f ICML, 2017 24 /29



Outline

@ Results

tian Deng, Anssi Kanervisto, Alexander Mimage-to-Markup Generation with Coarse-



@ 97.5% exact match accuracy of decoding HTML images

@ Reimplement Image-to Caption work on Latex and achieved accuracy
of over 75% for exact matches

Model Preprocessing BLEU (tok) BLEU (norm) Edit Distance Exact Match Exact Match (-ws)
INFTY - 51.20 66.65 53.82 15.60 26.66
CNNENC norm 52.53 75.01 61.17 53.53 55.72
WYGIWYS tok 73.71 73.97 84.26 74.46 77.04
WYGIWYS norm 5841 87.73 87.60 77.46 79.88

Table 3: Main experimental results on the IM2LATEX-100K dataset. Reports the BLEU score compared to the tokenized
formulas (BLEU (tok)), and the BLEU score compared to the normalized formulas (BLEU (norm)), column-wise image edit
distance, exact match, and exact match without whitespace columns.
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Figure 5: Typical errors in the LaTeX dataset. We show the
operations needed to get ground truth from the rendered pre-
dictions. Red denotes add operations and blue denotes delete
operations.
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Implementation

@ Mostly written in Torch, Python for preprocessing, and utilized lua
libraries

@ Bucketed inputs into similar size images
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